# КОМАНДЫ УДАЛЕННОЙ НАСТРОЙКИ



2.3

ВЕРСИЯ

GLONARUS



РУКОВОДСТВО ПО ЭКСПЛУАТАЦИИ

# ОГЛАВЛЕНИЕ

| Порядок конфигурирования                         | 4   |
|--------------------------------------------------|-----|
| Защита и безопасность                            | 6   |
| Сервисные команды                                | 11  |
| Настройки GSM                                    | 34  |
| Навигация                                        | 64  |
| Координатные записи                              | 89  |
| Группировка данных                               | 97  |
| Вспомогательные записи                           | 101 |
| Адаптивная запись параметров                     | 104 |
| Серверы                                          | 143 |
| Настройки EGTS (Минтранс)                        | 162 |
| Дискретные выходы                                | 169 |
| Дискретные входы                                 | 175 |
| Универсальные входы                              | 182 |
| Гревожная кнопка                                 | 185 |
| Аналоговые входы                                 | 189 |
| Шина RS-485                                      | 194 |
| Протокол MODBUS                                  | 200 |
| <b>Датчики уровня топлива (ДУТ)</b>              | 215 |
| <b>Датчики ТКАМ (измерители угла наклона)</b>    | 226 |
| <b>Датчики веса и пассажиропотока</b>            | 237 |
| Гопливозаправщик                                 | 254 |
| СКЗ (система контроля загрузки)                  | 260 |
| Шина 1-wire                                      | 265 |
| Системы измерения для нефтехранилищ              | 274 |
| Шина CAN                                         | 285 |
| Диагностика по шине CAN                          | 291 |
| Уровневые параметры CAN                          | 302 |
| Параметры CAN, значения которых хранятся в Int64 | 306 |
| Цискретные параметры CAN                         | 310 |
|                                                  |     |

| Произвольные параметры CAN    | 314 |
|-------------------------------|-----|
| Запросы в активном режиме CAN | 321 |
| Тахограф                      | 323 |
| Интерфейс USB CDC             | 335 |
| Акселерометр                  | 338 |
| Контроль качества вождения    | 344 |
| События                       | 370 |
| Движение и остановка          | 396 |
| Скрипты                       | 409 |
| Передача файлов               | 412 |
| Отладка                       | 421 |
| Состояние контроллера         | 427 |
| Сервис параметров АвтоГРАФ    | 431 |
| Таймер                        | 435 |
| Bluetooth low energy          | 439 |
| Энергосбережение              | 447 |
| Управление ID                 | 486 |
| Дифференциальные поправки     | 489 |

# Порядок конфигурирования

Управляющие команды могут быть отправлены контроллеру ГЛОНАРУС с телефонного номера посредством SMS-сообщений. Команда должна быть отправлена на номер активной SIM-карты контроллера.

# Конфигурирование с помощью SMS-команд

SMS-команда должна быть отправлена на телефонный номер SIM-карты, установленной в соответствующем контроллере. Для контроллеров, поддерживающих работу с двумя SIM-картами, SMS-команду следует отсылать на номер активной SIM-карты. Контроллер всегда передает ответ на номер, с которого была отправлена SMS-команда. Следует учитывать, что при установке SIM-карты в контроллер с нее автоматически удалятся все находящиеся на ней SMS-сообщения. При работе контроллера в памяти SIM-карты сохраняются только не переданные по каким-либо причинам SMS-сообщения.

#### SMS-команды имеют формат:

password COMMAND=параметры;

#### где:

- **password** пароль, с помощью которого осуществляется доступ к данным контроллера. Этот пароль был записан в контроллер при конфигурировании программой GSMConf.exe. Длина пароля 8 символов.
- **COMMAND** команда настройки.
- параметры параметры команды.

**Примечание.** Все команды должны быть набраны только латинскими заглавными буквами. Ответное SMS-сообщение будет отправлено только при полном совпадении команды с заданным форматом и паролем контроллера. В любом другом случае входящие SMS-команды игнорируются и не обрабатываются.

#### Формат ответа для большинства команд следующий:

serial(alias) #СОММАND=параметры

#### где:

- **serial** серийный номер контроллера.
- alias имя контроллера.
- **COMMAND** команда, которая была отправлена контроллеру.
- параметры параметры SMS-команды.

Если в контроллере установлено имя (alias), то оно добавляется после серийного номера перед знаком #.

#### Пример ответа:

52500 (Kamaz625) #PERIODWR=5;

# Запрос настроек посредством SMS-команд

Запрос параметра осуществляется с помощью SMS-команды с префиксом G. Например, команда GPERIODWR запрашивает значение периода записи точек трека.

#### Формат SMS-команды запроса:

password GCOMMAND;

#### где:

- **password** пароль, с помощью которого осуществляется доступ к данным контроллера. Этот пароль был записан в контроллер при конфигурировании программой GSMConf.exe. Длина пароля 8 символов.
- **COMMAND** команда.
- **G** префикс, обозначающий запрос из контроллера значений параметров указанной команды.

**Примечание.** Некоторые команды могут не иметь команды запроса.

# Защита и безопасность

| Список команд  | Описание                                                                           |
|----------------|------------------------------------------------------------------------------------|
| GSUPERPASSWORD | Запрос состояния защиты настроек.                                                  |
| ENTERSPASSWORD | Временное снятие защиты настроек.                                                  |
| EXITSPASSWORD  | Восстановление защиты, временно снятой командой ENTERSPASSWORD.                    |
| HIDESTRINGS    | Установка защиты от считывания конфиденциальных строк (PIN коды, пароли и прочее). |

# **GSUPERPASSWORD**

Запрос состояния защиты настроек.

- Доступна через сервер.
- Версия прошивки: 01.02-а4 и выше.

# Формат команды:

GSUPERPASSWORD;

# Формат ответа:

SUPERPASSWORD=level:author;

# Параметры:

| level  | Установленный уровень защиты настроек:  • 0 — нет защиты;  • 1 — защита настроек сервера;  • 2 — защита всех настроек контроллера. |
|--------|------------------------------------------------------------------------------------------------------------------------------------|
| author | Информация о компании, установившей защиту.                                                                                        |

# Пример команды:

GSUPERPASSWORD;

# Пример ответа:

SUPERPASSWORD=0:НПО "ТехноКом" г.Челябинск;

# **ENTERSPASSWORD**

Временное снятие защиты настроек.

- Команда позволяет временно снять защиту с целью внесения изменения настроек. Защита восстанавливается при следующей перезагрузке контроллера (по команде RESET, раз в сутки или при переключении питания) или по команде EXITSPASSWORD.
- Доступна через сервер и SMS.
- Версия прошивки: 01.02-а4 и выше.
- Команда запроса: —

# Формат команды:

ENTERSPASSWORD=sec\_password;

## Формат ответа:

ENTERSPASSWORD=sec;

# Параметры:

| sec_password | Текущий пароль защиты от изменения настроек. Длина — 8 символов. |  |  |
|--------------|------------------------------------------------------------------|--|--|
|              | Состояние снятия защиты:                                         |  |  |
| sec          | • 1 — защита снята;                                              |  |  |
|              | • 0 — ошибка снятия защиты.                                      |  |  |

### Пример команды:

ENTERSPASSWORD=qwer1234;

# Пример ответа:

ENTERSPASSWORD=1;

# **EXITSPASSWORD**

Восстановление защиты, временно снятой командой ENTERSPASSWORD.

- Доступна через сервер и SMS.
- Версия прошивки: 01.02-а4 и выше.
- Команда запроса: —

# Формат команды:

EXITSPASSWORD;

# Пример команды:

EXITSPASSWORD;

# Пример ответа:

EXITSPASSWORD;

# **HIDESTRINGS**

Установка защиты от считывания конфиденциальных строк (PIN коды, пароли и прочее).

- Доступна через сервер и SMS.
- Версия прошивки: 01.02-а4 и выше.
- Команда запроса: GHIDESTRINGS.

# Формат команды:

HIDESTRINGS=level;

# Параметры:

|       | Уровень защиты строк:                                                                                                   |
|-------|-------------------------------------------------------------------------------------------------------------------------|
| level | <ul> <li>0 — нет защиты;</li> <li>1 — строки защищены от считывания. При запросе защищенной настройки вместо</li> </ul> |
|       | реального значения будет показан символ * :<br>например, MODEM1PIN1=*; — PIN код модема 1 защищен.                      |

**Примечание.** Настройку <u>HIDESTRINGS</u> можно сменить только при уровне защиты 0 (SUPERPASSWORD=0;), рекомендуется использовать ее совместно с уровнем защиты 1.

# Пример команды:

HIDESTRINGS=1;

# Пример ответа:

HIDESTRINGS=1;

# Сервисные команды

| Список команд     | Описание                                                                                                                                                |
|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| GSERNUM           | Запрос серийного номера.                                                                                                                                |
| GVERSION          | Запрос версии прошивки.                                                                                                                                 |
| FWUPDATE          | Обновление прошивки с сервера обновлений.                                                                                                               |
| RESET             | Перезапуск контроллера.                                                                                                                                 |
| EXTUPDATE         | Обновление прошивки периферийного устройства производства ООО НПО «ТехноКом», подключенного по шине RS-485.                                             |
| EXTVERSION        | Запрос версии прошивки периферийного устройства производства ООО НПО «ТехноКом», подключенного по шине RS-485.                                          |
| EXTSERIAL         | Запрос серийного номера периферийного устройства производства ООО НПО «ТехноКом», подключенного по шине RS-485.                                         |
| GLOCK             | Запрос списка заблокированных функций контроллера.                                                                                                      |
| UNLOCK            | Разблокирование функций контроллера.                                                                                                                    |
| ERASECONF         | Сброс до заводских настроек.                                                                                                                            |
| REC               | Создание в sbin файле длинной записи с типом 0x0040 и бинарными данными, переданными в команде.                                                         |
| PERIPHLONGRECORD  | Включение режима сохранения информации о подключенных периферийных устройствах в длинные записи.                                                        |
| LLSVERSIONSN      | Запрос версии прошивки и серийного номера LLS ДУТ (датчик уровня топлива) производства ООО НПО «ТехноКом», подключенного по шине RS-485.                |
| TKAMVERSIONSN     | Запрос версии прошивки и серийного номера ТКАМ ДУН (датчик угла наклона) производства ООО НПО «ТехноКом», подключенного по шине RS-485.                 |
| TKKZVERSIONSN     | Запрос версии прошивки и серийного номера СКЗ (система контроля загрузки) производства ООО НПО «ТехноКом», подключенного по шине RS-485.                |
| AGCRVERSIONSN     | Запрос версии прошивки и серийного номера TK-Cardreader Plus (считыватель бесконтактный) производства ООО НПО «ТехноКом», подключенного по шине RS-485. |
| AGFCVERSIONSN     | Запрос версии прошивки и серийного номера топливораздаточного контроллера производства ООО НПО «ТехноКом», подключенного по шине RS-485.                |
| DISPLAYVERSIONSN  | Запрос версии прошивки и серийного номера информационного дисплея производства ООО НПО «ТехноКом», подключенного по шине RS-485.                        |
| RECEIVERVERSIONSN | Запрос версии прошивки и серийного номера приемника Bluetooth производства ООО НПО «ТехноКом», подключенного по шине RS-485.                            |
| RECORDSNUM        | Запрос количества записей в контроллере.                                                                                                                |
| MINVALIDVERSION   | Запрос минимальной разрешенной для контроллера версии прошивки.                                                                                         |

| ~  | FF |       |   | ВЛ  |
|----|----|-------|---|-----|
| GS | FK | C IVI | u | IVI |

Запрос серийного номера.

# Формат команды:

GSERNUM;

# Пример команды:

GSERNUM;

# Пример ответа:

SERNUM=5160001;

**Примечание.** Доступна для контроллеров АвтоГРАФ-Mobile X по CDC.

# **GVERSION**

Запрос версии прошивки.

- Доступна через сервер и SMS.
- Версия прошивки: 01.02-а4 и выше.

# Формат команды:

GVERSION;

# Пример команды:

GVERSION;

# Пример ответа:

VERSION=01.02-a4;

# **FWUPDATE**

Обновление прошивки с сервера обновлений.

- Доступна через сервер и SMS.
- Версия прошивки: 01.02-а4 и выше.
- Команда запроса: GFWUPDATE.

# Формат команды:

FWUPDATE=update;

# Параметры:

|        | Обновление микропрограммы контроллера:            |
|--------|---------------------------------------------------|
| undata | • 2 — загрузить бета версию микропрограммы;       |
| update | • 1 — загрузить стабильную версию микропрограммы; |
|        | • 0 — отменить загрузку микропрограммы.           |

# Пример команды:

FWUPDATE=1;

# Пример ответа:

FWUPDATE=1;

# **RESET**

Перезапуск контроллера.

- Доступна через сервер и SMS.
- Версия прошивки: 01.02-а4 и выше.
- Команда запроса: —

| г | ٦n | м | 84  | ۵r | · L | 'n | νа  |    | <b>11</b> |    |
|---|----|---|-----|----|-----|----|-----|----|-----------|----|
|   | ıμ | V | IVI | ςĻ | 'n  | U  | vıa | п, | 40        | ı. |

RESET;

# Пример ответа:

RESET;

#### **EXTUPDATE**

Обновление прошивки периферийного устройства производства ООО НПО «ТехноКом», подключенного по шине RS-485.

- Доступна через сервер и SMS.
- Версия прошивки: 01.12-а1 и выше.
- Команда запроса: —

#### Формат команды:

EXTUPDATE=firmware,addr;

# Параметры:

| firmware | <ul> <li>Версия обновления:</li> <li>2 — загрузить бета версию микропрограммы;</li> <li>1 — загрузить стабильную версию микропрограммы;</li> <li>0 — отменить загрузку микропрограммы.</li> </ul> |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| addr     | Сетевой адрес периферийного устройства на шине RS-485 контроллера в десятичном формате (0255).                                                                                                    |

**Примечание.** Параметр **addr** также можно ввести в шестнадцатеричном формате: 0xaddr или addrh.

#### Пример команды:

Обновление прошивки топливораздаточного контроллера AGFC (адрес в HEX — D5h, адрес в DEC — 213).

EXTUPDATE=1,213;

# Пример ответа:

EXTUPDATE=1,213,AGFC-1.63;

#### **EXTVERSION**

Запрос версии прошивки периферийного устройства производства ООО НПО «ТехноКом», подключенного по шине RS-485.

- Доступна через сервер и SMS.
- Версия прошивки: 13.18 и выше.
- Команды запроса: GEXTVERSION, EXTVERSION. Обе команды работают одинаково на запрос.

#### Формат команды:

EXTVERSION=addr;

# Формат ответа:

EXTVERSION=addr,version;

# Параметры:

| addr    | Сетевой адрес периферийного устройства на шине RS-485 контроллера в десятичном формате (0255). |
|---------|------------------------------------------------------------------------------------------------|
| version | Версия микропрограммы периферийного устройства, строка до 16 символов.                         |

**Примечание.** Параметр **addr** также можно ввести в шестнадцатеричном формате: Oxaddr или addrh.

# Пример команды:

EXTVERSION=213;

# Пример ответа:

EXTVERSION=213,AGFC-1.63;

#### **EXTSERIAL**

Запрос серийного номера периферийного устройства производства ООО НПО «ТехноКом», подключенного по шине RS-485.

- Доступна через сервер и SMS.
- Версия прошивки: 13.31 и выше.
- Команды запроса: GEXTSERIAL, EXTSERIAL. Обе команды работают одинаково на запрос.

#### Формат команды:

EXTSERIAL=addr;

# Формат ответа:

EXTSERIAL=addr,serial;

# Параметры:

| addr   | Сетевой адрес периферийного устройства на шине RS-485 контроллера в десятичном формате (0255). |
|--------|------------------------------------------------------------------------------------------------|
| serial | Серийный номер периферийного устройства.                                                       |

**Примечание.** Параметр **addr** также можно ввести в шестнадцатеричном формате: Oxaddr или addrh.

# Пример команды:

EXTSERIAL=213;

# Пример ответа:

EXTSERIAL=213,10000000;

# **GLOCK**

Запрос списка заблокированных функций контроллера.

- Доступна через сервер и SMS.
- Версия прошивки: 01.12 и выше.
- Команда запроса: —

# Формат команды:

GLOCK;

# Формат ответа:

LOCK=status;

# Параметры:

| status | Заблокированные функции в виде битового поля, в формате НЕХ. Для расшифровки ответа от контроллера необходимо перевести полученное значение в двоичный формат (старшие биты перечислены первыми: 1 — функция заблокирована, 0 — функция не заблокирована):  • биты 3210 — резерв;  • бит 9 — передача данных возможна только на сервер АвтоГРАФ;  • бит 8 — передача данных возможна только на сервер ТК-Monitoring;  • биты 72 — резерв;  • бит 1 — передача данных в протоколе АвтоГРАФ заблокирована. |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

# Пример команды:

GLOCK;

**Пример ответа:** в контроллере заблокирована функция «Протокол АвтоГРАФ».

LOCK=00000001;

#### UNLOCK

Разблокирование функций контроллера.

- Команда позволяет разблокировать указанную в параметрах команды функцию контроллера АвтоГРАФ, если он поставляется с отключенными функциями.
- Доступна через сервер и SMS.
- Версия прошивки: 01.12 и выше.
- Команда запроса: —

#### Формат команды:

UNLOCK=func,unlock\_key;

# Формат ответа:

UNLOCK=func,answer;

# Параметры:

| func       | Функция контроллера, которую необходимо включить.                                                                                                                                                                                                                                           |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| unlock_key | Восьмизначный пароль для разблокирования функции. Для разблокирования каждой функции необходим отдельный пароль.                                                                                                                                                                            |
| answer     | Ответ контроллера на команду разблокирования функции: • unlock_key — если пароль разблокирования совпал с заданным в контроллере, то в ответ вернется этот же пароль и функция будет включена. • FALSE — если отправленный пароль не совпал. В этом случае функция не будет разблокирована. |

# Пример команды:

UNLOCK=1,GFJKG1M3;

# Пример ответа:

UNLOCK=1,GFJKG1M3;

**Примечание.** Для получения пароля разблокировки обратитесь к производителю контроллеров АвтоГРАФ (000 НПО «ТехноКом»).

#### **ERASECONF**

Сброс до заводских настроек.

- Доступна через сервер и SMS.
- Версия прошивки: 13.35 и выше.
- Команда запроса: GERASECONF.

### Формат запроса:

**GERASECONF**;

#### Формат ответа:

ERASECONF=keyExt,keyInt;

### Формат команды:

ERASECONF=keyExt,keyInt,pass;

# Формат ответа:

ERASECONF=statusExt,statusInt,statusWrite;

#### Параметры:

| keyExt      | Ключ (пароль) для стирания настроек с уровнями защиты «0» и «2» (см. GSUPERPASSWORD). |
|-------------|---------------------------------------------------------------------------------------|
| keyInt      | Ключ (пароль) для стирания настроек с уровнем защиты «1» (см. GSUPERPASSWORD).        |
| pass        | Пароль от контроллера (см. PASSWORD).                                                 |
| statusExt   | Статус стирания настроек с уровнями защиты «0» и «2» (1— настройки стерты).           |
| statusInt   | Статус стирания настроек с уровнем защиты «1» (1— настройки стерты).                  |
| statusWrite | Статус фиксации настроек в энергонезависимой памяти (0 — нет ошибок записи).          |

**Примечание.** Для сброса настроек следует сначала запросить ключи командой GERASECONF, а затем ввести их вместе с паролем от контроллера командой ERASECONF.

**Примечание.** Стерты будут только те настройки, ключ к которым совпадает с ключом в ответе на команду GERASECONF.

# Пример команды:

GERASECONF;

#### Пример ответа:

ERASECONF=1234,6789;

# Пример команды:

ERASECONF=1234,0,testtest;

# Пример ответа:

ERASECONF=1,0,0;

**Примечание.** Команда заполняет энергонезависимую память настройками по умолчанию. После выполнения команды происходит перезапуск контроллера.

**Внимание!** При стирании внутренних (защищенных) настроек происходит сброс адреса сервера. Не рекомендуется делать сброс внутренних настроек удаленно.

#### REC

Создание в sbin файле длинной записи с типом 0x0040 и бинарными данными, переданными в команде.

- Доступна через сервер и SMS.
- Версия прошивки: 13.23 и выше.
- Команда запроса: —

# Формат команды:

REC=Len:Data;

# Формат ответа:

REC=Len:Data;

# Параметры:

| Len  | Длина бинарных данных (до 500 байт).                    |
|------|---------------------------------------------------------|
| Data | Строка, состоящая из напечатанных данных в НЕХ формате. |

# Пример команды:

REC=10:0102030405060708090A;

### Пример ответа:

REC=10:0102030405060708090A;

**Примечание.** Максимальное количество данных, которые можно записать в длинную запись этой командой, составляет 500 байт.

**Примечание.** Длина строки в параметре **Data** должна быть в 2 раза длиннее, чем количество передаваемых байт, так как 1 байт кодируется в строке как 2 символа.

# **PERIPHLONGRECORD**

Включение режима сохранения информации о подключенных периферийных устройствах в длинные записи.

- Доступна через сервер и SMS.
- Версия прошивки: 13.31 и выше.
- Команда запроса: PERIPHLONGRECORD.

# Формат команды:

PERIPHLONGRECORD=active;

# Параметры:

|        | Активный режим:  |
|--------|------------------|
| active | • 1 — включить;  |
|        | • 0 — выключить. |

**Примечание.** Отправка информации происходит через 10 мин после включения контроллера.

# Пример команды:

PERIPHLONGRECORD=1;

# Пример ответа:

PERIPHLONGRECORD=1;

#### **LLSVERSIONSN**

Запрос версии прошивки и серийного номера LLS ДУТ (датчик уровня топлива) производства ООО НПО «ТехноКом», подключенного по шине RS-485.

- Доступна через сервер и SMS.
- Версия прошивки: 13.31 и выше.
- Команды запроса: GLLSVERSIONSN, LLSVERSIONSN. Обе команды работают одинаково на запрос.

# Формат команды:

LLSVERSIONSN=index;

# Формат ответа:

LLSVERSIONSN=index,firmware,serial;

# Параметры:

| index    | Индекс периферийного устройства на шине RS-485 контроллера (18). |
|----------|------------------------------------------------------------------|
| firmware | Версия прошивки периферийного устройства.                        |
| serial   | Серийный номер периферийного устройства.                         |

# Пример команды:

LLSVERSIONSN=0;

# Пример ответа:

LLSVERSIONSN=0,TKLS-1.63,10000000;

#### **TKAMVERSIONSN**

Запрос версии прошивки и серийного номера ТКАМ ДУН (датчик угла наклона) производства ООО НПО «ТехноКом», подключенного по шине RS-485.

- Доступна через сервер и SMS.
- Версия прошивки: 13.31 и выше.
- Команды запроса: GTKAMVERSIONSN, <u>TKAMVERSIONSN</u>. Обе команды работают одинаково на запрос.

# Формат команды:

TKAMVERSIONSN=index;

# Формат ответа:

TKAMVERSIONSN=index,firmware,serial;

#### Параметры:

| index    | Индекс периферийного устройства на шине RS-485 контроллера (116). |
|----------|-------------------------------------------------------------------|
| firmware | Версия прошивки периферийного устройства.                         |
| serial   | Серийный номер периферийного устройства.                          |

#### Пример команды:

TKAMVERSIONSN=0;

# Пример ответа:

TKAMVERSIONSN=0,TKAM-1.63,10000000;

#### **TKKZVERSIONSN**

Запрос версии прошивки и серийного номера СКЗ (система контроля загрузки) производства ООО НПО «ТехноКом», подключенного по шине RS-485.

- Доступна через сервер и SMS.
- Версия прошивки: 13.31 и выше.
- Команды запроса: GTKKZVERSIONSN, <u>TKKZVERSIONSN</u>. Обе команды работают одинаково на запрос.

# Формат команды:

TKKZVERSIONSN=index;

# Формат ответа:

TKKZVERSIONSN=index,firmware,serial;

#### Параметры:

| index    | Индекс периферийного устройства на шине RS-485 контроллера (116). |
|----------|-------------------------------------------------------------------|
| firmware | Версия прошивки периферийного устройства.                         |
| serial   | Серийный номер периферийного устройства.                          |

# Пример команды:

TKKZVERSIONSN=0;

# Пример ответа:

TKKZVERSIONSN=0,TKKZ-1.63,10000000;

#### **AGCRVERSIONSN**

Запрос версии прошивки и серийного номера TK-Cardreader Plus (считыватель бесконтактный) производства ООО НПО «ТехноКом», подключенного по шине RS-485.

- Доступна через сервер и SMS.
- Версия прошивки: 13.31 и выше.
- Команды запроса: GAGCRVERSIONSN, <u>AGCRVERSIONSN</u>. Обе команды работают одинаково на запрос.

# Формат команды:

AGCRVERSIONSN=index;

# Формат ответа:

AGCRVERSIONSN=index,firmware,serial;

#### Параметры:

| index    | Индекс периферийного устройства на шине RS-485 контроллера (18). |
|----------|------------------------------------------------------------------|
| firmware | Версия прошивки периферийного устройства.                        |
| serial   | Серийный номер периферийного устройства.                         |

# Пример команды:

EXTSERIAL=0;

# Пример ответа:

AGCRVERSIONSN=0,TKCR-1.63,10000000;

#### **AGFCVERSIONSN**

Запрос версии прошивки и серийного номера топливораздаточного контроллера производства ООО НПО «ТехноКом», подключенного по шине RS-485.

- Доступна через сервер и SMS.
- Версия прошивки: 13.31 и выше.
- Команды запроса: GAGFCVERSIONSN, <u>AGFCVERSIONSN</u>. Обе команды работают одинаково на запрос.

# Формат команды:

AGFCVERSIONSN=index;

# Формат ответа:

AGFCVERSIONSN=index,firmware,serial;

# Параметры:

| index    | Индекс периферийного устройства на шине RS-485 контроллера (116). |
|----------|-------------------------------------------------------------------|
| firmware | Версия прошивки периферийного устройства.                         |
| serial   | Серийный номер периферийного устройства.                          |

#### Пример команды:

AGFCVERSIONSN=0;

#### Пример ответа:

AGFCVERSIONSN=0,TKFC-1.63,10000000;

#### **DISPLAYVERSIONSN**

Запрос версии прошивки и серийного номера информационного дисплея производства ООО НПО «ТехноКом», подключенного по шине RS-485.

- Доступна через сервер и SMS.
- Версия прошивки: 13.39 и выше.
- Команды запроса: GDISPLAYVERSIONSN, <u>DISPLAYVERSIONSN</u>. Обе команды работают одинаково на запрос.

# Формат команды:

DISPLAYVERSIONSN;

# Формат ответа:

DISPLAYVERSIONSN=firmware, serial;

#### Параметры:

| firmware | Версия прошивки периферийного устройства. |
|----------|-------------------------------------------|
| serial   | Серийный номер периферийного устройства.  |

# Пример команды:

DISPLAYVERSIONSN;

# Пример ответа:

DISPLAYVERSIONSN=ATDM-01.09,4129999;

#### **RECEIVERVERSIONSN**

Запрос версии прошивки и серийного номера приемника Bluetooth производства ООО НПО «ТехноКом», подключенного по шине RS-485.

- Доступна через сервер и SMS.
- Версия прошивки: 13.39 и выше.
- Команды запроса: GRECEIVERVERSIONSN, <u>RECEIVERVERSIONSN</u>. Обе команды работают одинаково на запрос.

# Формат команды:

RECEIVERVERSIONSN;

# Формат ответа:

RECEIVERVERSIONSN=firmware,serial;

# Параметры:

| firmware | Версия прошивки периферийного устройства. |
|----------|-------------------------------------------|
| serial   | Серийный номер периферийного устройства.  |

# Пример команды:

RECEIVERVERSIONSN;

# Пример ответа:

RECEIVERVERSIONSN=RDWL-01.21,13099989;

# **RECORDSNUM**

Запрос количества записей в контроллере.

- Доступна через сервер и SMS.
- Версия прошивки: 13.36 и выше.
- Команды запроса: GRECORDSNUM, RECORDSNUM. Обе команды работают одинаково на запрос.

# Формат команды:

GRECORDSNUM;

# Формат ответа:

RECORDSNUM=rec,unsent1,unsent2,unsent3,total;

# Параметры:

| rec     | Количество записей в контроллере.                     |  |
|---------|-------------------------------------------------------|--|
| unsent1 | Количество записей, ждущих отправки на первый сервер. |  |
| unsent2 | Количество записей, ждущих отправки на второй сервер. |  |
| unsent3 | Количество записей, ждущих отправки на третий сервер. |  |
| total   | Максимальное количество записей в контроллере.        |  |

# Пример команды:

GRECORDSNUM;

# Пример ответа:

RECORDSNUM=357867,160796,357867,357867,368640;

#### **MINVALIDVERSION**

Запрос минимальной разрешенной для контроллера версии прошивки.

- Доступна через сервер и SMS.
- Версия прошивки: 13.38 и выше.
- Команды запроса: GMINVALIDVERSION, MINVALIDVERSION. Обе команды работают одинаково на запрос.

# Формат команды:

**GMINVALIDVERSION**;

# Формат ответа:

MINVALIDVERSION=ver;

#### Параметры:

| ver | Минимальная версия прошивки, которую можно загрузить в контроллер. |
|-----|--------------------------------------------------------------------|
|-----|--------------------------------------------------------------------|

# Пример команды:

GMINVALIDVERSION;

# Пример ответа:

MINVALIDVERSION=13.37;

# Настройки GSM

| Список команд                                          | Описание                                                                                                   |
|--------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
| MODEMmTELNUMx, TELNUM,<br>SIM2TELNUM                   | Установка телефонного номера SIM-карты.                                                                    |
| GMODEMmIMEI, GIMEI                                     | Запрос IMEI модема.                                                                                        |
| GMODEMmICCIDx, GCCID, GICCID, GMODEM1ICCID, GSIM2ICCID | Запрос ICCID SIM-карты.                                                                                    |
| GMODEMmIMSIx, GIMSI,<br>GMODEM1IMSI, GSIM2IMSI         | Запрос IMSI SIM-карты.                                                                                     |
| GMODEMmMODEL                                           | Запрос модели модема.                                                                                      |
| MODEMmFIRMWARE                                         | Запрос версии ПО модема.                                                                                   |
| MODEMnDISABLE                                          | Отключение модема.                                                                                         |
| MODEMmSIMxGET                                          | Отправка SMS-сообщения на указанный номер.                                                                 |
| MODEMmPINx, PIN, SIM2PIN                               | Назначение PIN кода SIM-карты.                                                                             |
| MODEMmAPNx, APNFULL,<br>SIM2APNFULL                    | Настройка точки доступа GPRS.                                                                              |
| GMODEMMAPNROAMINGx,<br>APNROAMING,<br>GSIM2APNROAMING  | Настройка точки доступа GPRS в роуминге.                                                                   |
| MODEMmPERIODSENDx,<br>PERIODSEND, SIM2PERIODSEND       | Установка периода отправки данных на сервер по GSM-каналу.                                                 |
| MODEMmROAMINGMODEx                                     | Включение режима экономии в роуминге для первого модема.                                                   |
| MODEMmPERIODROAMINGX, PERIODROAMING, SIM2PERIODROAMING | Установка периода отправки данных по GSM-каналу в роуминге.                                                |
| FULLONLINE                                             | Включение режима «Полный онлайн».                                                                          |
| ALIAS                                                  | Установка имени контроллера.                                                                               |
| SMSFORMAT                                              | Установка формата координат в SMS-сообщениях.                                                              |
| GSMSTAGE                                               | Установка статуса модема 1.                                                                                |
| MODEMmSTATUS                                           | Запрос статуса GSM связи.                                                                                  |
| GSMmRESTART                                            | Перезапуск модема. Сбрасывает статус модема (ответы GSMSTAGE и MODEM1STATUS) и пробуждает его от ожидания. |
| MODEMmSIMxHOMEn                                        | Установка идентификаторов домашних операторов SIM-карты.                                                   |
| MODEMmSIMxPRIORITYn                                    | Установка идентификаторов роуминговых операторов SIM-карты.                                                |
| MODEMmSIMxFORBIDDENn                                   | Установка идентификаторов запрещенных операторов SIM-карты.                                                |
| MODEMmSIMxSELECTMODE                                   | Установка режима работы с разными операторами.                                                             |
| MODEMmNETINFOPERIOD                                    | Установка периода записи параметров сети GSM.                                                              |
| MODEMmUPDATEFW                                         | Обновление ПО GSM модема.                                                                                  |

| Список групп параметров | Описание                             |
|-------------------------|--------------------------------------|
| GsmSimSelectMode        | Режимы работы с разными операторами. |
| GsmStages               | Статусы и ошибки модема.             |

# MODEMmTELNUMx, TELNUM, SIM2TELNUM

Установка телефонного номера SIM-карты.

- Доступна через сервер и SMS.
- Версия прошивки: 01.02-а4 и выше.
- Команды запроса: GTELNUM, GSIM2TELNUM, GMODEMmTELNUMx.

# Формат команды:

- TELNUM=phone; для SIM-карты №1 модема 1.
- SIM2TELNUM=phone; для SIM-карты №2 модема 1.
- MODEMmTELNUMx=phone;

#### Параметры:

| m     | Номер модема: • 1 — основной модем; • 2 — второй модем, для устройств АвтоГРАФ-АСН.                           |  |
|-------|---------------------------------------------------------------------------------------------------------------|--|
| х     | Номер SIM-карты (1, 2).                                                                                       |  |
| phone | Номер телефона. Телефонный номер следует вводить слитно с префиксом выхода на междугородную линию (+7 или 8). |  |

**Примечание.** Команды TELNUM и SIM2TELNUM оставлены для совместимости с бортовыми контроллерами АвтоГРАФ предыдущих версий.

# Пример команды:

TELNUM=+79518885647;

# Пример ответа:

TELNUM=+79518885647;

## **GMODEMmIMEI, GIMEI**

Запрос IMEI модема.

- Доступна через сервер и SMS.
- Версия прошивки: 13.10 и выше.
- Команда запроса: GMODEMmIMEI.

#### Формат ответа:

MODEMmIMEI=imei;

#### Параметры:

| m    | Номер модема: • 1 — основной модем; • 2 — второй модем, для устройств АвтоГРАФ-АСН. |
|------|-------------------------------------------------------------------------------------|
| imei | IMEI модема.                                                                        |

## Пример команды:

GMODEM1IMEI;

## Пример ответа:

MODEM1IMEI=863051063471527;

**Примечание.** Команда GIMEI оставлена для совместимости с бортовыми контроллерами АвтоГРАФ предыдущих версий. Команда GIMEI соответствует команде GMODEM1IMEI.

# GMODEMmICCIDx, GCCID, GICCID, GMODEM1ICCID, GSIM2ICCID

Запрос ICCID SIM-карты.

- Доступна через сервер и SMS.
- Версия прошивки: 13.22 и выше.
- Команда запроса: GMODEMmICCIDx.

#### Формат ответа:

MODEMmICCIDx=iccid;

#### Параметры:

| m     | Номер модема: • 1 — основной модем; • 2 — второй модем, для устройств АвтоГРАФ-АСН. |
|-------|-------------------------------------------------------------------------------------|
| х     | Номер SIM-карты (1, 2).                                                             |
| iccid | ICCID SIM-карты.                                                                    |

#### Пример команды:

GMODEM1ICCID1;

#### Пример ответа:

MODEM1ICCID1=89701011039556123449;

**Примечание.** Команды GCCID, GICCID, GMODEM1ICCID и GSIM2ICCID оставлены для совместимости с бортовыми контроллерами АвтоГРАФ предыдущих версий. Команды GCCID, GICCID и GMODEM1ICCID соответствуют команде GMODEM1ICCID1. Команда GSIM2ICCID соответствует команде GMODEM1ICCID2.

## GMODEMmIMSIx, GIMSI, GMODEM1IMSI, GSIM2IMSI

Запрос IMSI SIM-карты.

• Доступна через сервер и SMS.

• Версия прошивки: 13.22 и выше.

• Команда запроса: GMODEMmIMSIx.

#### Формат ответа:

MODEMmIMSIx=imsi;

#### Параметры:

| m    | Номер модема: • 1 — основной модем; • 2 — второй модем, для устройств АвтоГРАФ-АСН. |
|------|-------------------------------------------------------------------------------------|
| x    | Номер SIM-карты (1, 2).                                                             |
| imsi | IMSI SIM-карты.                                                                     |

#### Пример команды:

GMODEM1IMSI1;

#### Пример ответа:

MODEM1IMSI1=250013859573328;

**Примечание.** Команды GIMSI, GMODEM1IMSI и GSIM2IMSI оставлены для совместимости с бортовыми контроллерами АвтоГРАФ предыдущих версий. Команды GIMSI и GMODEM1IMSI соответствуют команде GMODEM1IMSI1. Команда GSIM2IMSI соответствует команде GMODEM1IMSI2.

#### **GMODEMmMODEL**

Запрос модели модема.

- Доступна через сервер и SMS.
- Версия прошивки: 13.32 и выше.
- Команда запроса: GMODEMmMODEL.

# Формат ответа:

MODEMmMODEL=model;

#### Параметры:

| m     | Номер модема: • 1 — основной модем; • 2 — второй модем, для устройств АвтоГРАФ-АСН. |
|-------|-------------------------------------------------------------------------------------|
| model | Модель модема (строка).                                                             |

# Пример команды:

GMODEM1MODEL;

## Пример ответа:

MODEM1MODEL=SIM868;

#### **MODEMmFIRMWARE**

Запрос версии ПО модема.

- Доступна через сервер и SMS.
- Версия прошивки: 13.32 и выше.
- Команда запроса: GMODEMmFIRMWARE. Команда должна использоваться только на запрос.

## Формат команды:

GMODEMmFIRMWARE;

#### Формат ответа:

MODEMmFIRMWARE=fw;

## Параметры:

| m  | Номер модема: • 1 — основной модем; • 2 — второй модем, для устройств АвтоГРАФ-АСН. |
|----|-------------------------------------------------------------------------------------|
| fw | Версия ПО модема в виде строки.                                                     |

#### Пример команды:

GMODEM1FIRMWARE;

## Пример ответа:

MODEM1FIRMWARE=A011B01A7682M6\_DS\_FOTA;

#### **MODEMnDISABLE**

Отключение модема.

- Доступна через сервер и SMS.
- Версия прошивки: 13.29 и выше.
- Команда запроса: GMODEMmDISABLE.

#### Формат команды:

MODEMmDISABLE=x;

#### Параметры:

| m | Номер модема: • 1 — основной модем; • 2 — второй модем, для устройств АвтоГРАФ-АСН. |
|---|-------------------------------------------------------------------------------------|
| х | Отключить модем:  • 1 — модем отключен;  • 0 — модем включен.                       |

Примечание. Отключение возможно для уменьшения энергопотребления и/или количества записей событий.

**Внимание!** Будьте осторожны при отправке этой команды через сервер или SMS! После выключения модема контроллер перестанет выходить на связь.

## Пример команды:

MODEM1DISABLE=0;

#### Пример ответа:

MODEM1DISABLE=0;

#### **MODEMmSIMxGET**

Отправка SMS-сообщения на указанный номер.

- Доступна через сервер и SMS.
- Версия прошивки: 13.26 и выше.
- Команда запроса: —

## Формат команды:

MODEMmSIMxGET=recepient;

#### Параметры:

| m         | Номер модема: • 1 — основной модем; • 2 — второй модем, для устройств АвтоГРАФ-АСН.                                                                       |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| х         | Номер SIM-карты (1, 2).                                                                                                                                   |
| recepient | Номер телефона, на который следует отправить SMS-сообщение. Телефонный номер следует вводить слитно с префиксом выхода на междугородную линию (+7 или 8). |

**Примечание.** После обработки команды контроллер переключится на указанную SIM-карту и отправит с нее SMS-сообщение на указанный номер с текстом MODEM1SIMxGET. Таким образом можно узнать номер телефона SIM-карты в контроллере.

#### Пример команды:

MODEM1SIM1GET=+79554443322;

#### Пример ответа:

MODEM1SIM1GET=+79554443322;

## **MODEMmPINx, PIN, SIM2PIN**

Назначение PIN кода SIM-карты.

- Доступна через сервер и SMS.
- Версия прошивки: 01.02-а4 и выше.
- Команды запроса: GPIN, GSIM2PIN, GMODEMmPINx.

# Формат команды:

- PIN=pin; для SIM-карты №1 модема 1.
- SIM2PIN=pin; для SIM-карты №2 модема 1.
- MODEMmPINx=pin;

#### Параметры:

| m   | Номер модема: • 1 — основной модем; • 2 — второй модем, для устройств АвтоГРАФ-АСН. |
|-----|-------------------------------------------------------------------------------------|
| х   | Номер SIM-карты (1, 2).                                                             |
| pin | PIN код.                                                                            |

**Примечание.** Команды PIN и SIM2PIN оставлены для совместимости с бортовыми контроллерами АвтоГРАФ предыдущих версий.

#### Пример команды:

PIN=0222;

#### Пример ответа:

PIN=0222;

## MODEMmAPNx, APNFULL, SIM2APNFULL

Настройка точки доступа GPRS.

- Доступна через сервер и SMS.
- Версия прошивки: 01.02-а4 и выше.
- Команды запроса: GAPNFULL, GSIM2APNFULL, GMODEMmAPNx.

#### Формат команды:

- APNFULL="apnname","apnuser","apnpassword"; для SIM-карты №1 модема 1.
- SIM2APNFULL="apnname","apnuser","apnpassword"; для SIM-карты №2 модема 1.
- MODEMmAPNx="apnname","apnuser","apnpassword";

#### Параметры:

| m           | Номер модема: • 1 — основной модем; • 2 — второй модем, для устройств АвтоГРАФ-АСН. |
|-------------|-------------------------------------------------------------------------------------|
| х           | Номер SIM-карты (1, 2).                                                             |
| apnname     | Точка доступа к GPRS.                                                               |
| apnuser     | Имя пользователя точки доступа.                                                     |
| apnpassword | Пароль точки доступа.                                                               |

**Примечание.** Команды APNFULL и SIM2APNFULL оставлены для совместимости с бортовыми контроллерами АвтоГРАФ предыдущих версий.

#### Пример команды:

MODEM1APN1="mts.internet.ru","mts","mts";

#### Пример ответа:

MODEM1APN1="mts.internet.ru","mts","mts";

#### GMODEMmAPNROAMINGx, APNROAMING, GSIM2APNROAMING

Настройка точки доступа GPRS в роуминге.

- Доступна через сервер и SMS.
- Версия прошивки: 01.02-а4 и выше.
- Команды запроса: GAPNROAMING, GSIM2APNROAMING, GMODEMmAPNROAMINGx.

#### Формат команды:

- APNROAMING="apnname","apnuser","apnpassword"; для SIM-карты №1 модема 1.
- SIM2APNROAMING="apnname","apnuser","apnpassword"; для SIM-карты №2 модема 1.
- MODEMmAPNROAMINGx="apnname","apnuser","apnpassword";

#### Параметры:

| m           | Номер модема: • 1 — основной модем; • 2 — второй модем, для устройств АвтоГРАФ-АСН. |
|-------------|-------------------------------------------------------------------------------------|
| x           | Номер SIM-карты (1, 2).                                                             |
| apnname     | Точка доступа к GPRS.                                                               |
| apnuser     | Имя пользователя точки доступа.                                                     |
| apnpassword | Пароль точки доступа.                                                               |

**Примечание.** Команды APNROAMING и SIM2APNROAMING оставлены для совместимости с бортовыми контроллерами АвтоГРАФ предыдущих версий.

#### Пример команды:

MODEM1APNROAMING1="mts.internet.ru","mts","mts";

#### Пример ответа:

MODEM1APNROAMING1="mts.internet.ru", "mts"; "mts";

# MODEMmPERIODSENDx, PERIODSEND, SIM2PERIODSEND

Установка периода отправки данных на сервер по GSM-каналу.

- Доступна через сервер и SMS.
- Версия прошивки: 01.02-а4 и выше.
- Команды запроса: GPERIODSEND, GSIM2PERIODSEND, GMODEMmPERIODSENDx.

#### Формат команды:

- PERIODSEND=time; для SIM-карты №1 модема 1.
- SIM2PERIODSEND=time; для SIM-карты №2 модема 1.
- MODEMmPERIODSENDx=time;

#### Параметры:

| m    | Номер модема: • 1 — основной модем; • 2 — второй модем, для устройств АвтоГРАФ-АСН.                                   |
|------|-----------------------------------------------------------------------------------------------------------------------|
| х    | Номер SIM-карты (1, 2).                                                                                               |
| time | Период отправки данных на сервер, в секундах (04294967295). Рекомендуется устанавливать период в диапазоне 1043200 с. |

**Примечание.** Команды PERIODSEND и SIM2PERIODSEND оставлены для совместимости с бортовыми контроллерами АвтоГРАФ предыдущих версий.

#### Пример команды:

MODEM1PERIODSEND1=30;

#### Пример ответа:

MODEM1PERIODSEND1=30;

**Примечание.** Следует учитывать, что при установке для параметра **time** значения, превышающего сутки, выдерживание периода не гарантируется из-за автоматического ежесуточного перезапуска контроллера.

#### **MODEMmROAMINGMODEX**

Включение режима экономии в роуминге для первого модема.

- Доступна через сервер и SMS.
- Версия прошивки: 01.02-а4 и выше.
- Команда запроса: GMODEMmROAMINGMODEx

#### Формат команды:

MODEMmROAMINGMODEx=mode;

#### Параметры:

| m    | Номер модема: • 1 — основной модем; • 2 — второй модем, для устройств АвтоГРАФ-АСН.                                           |
|------|-------------------------------------------------------------------------------------------------------------------------------|
| х    | Номер SIM-карты (1, 2).                                                                                                       |
| mode | Режим экономии в роуминге. Символ R включает режим экономии в роуминге, символ N (или любой другой) выключает режим экономии. |

**Примечание.** Когда включен режим экономии и контроллер находится в роуминге (вне зоны обслуживания домашней сети), период передачи данных MODEMmPERIODSENDх заменяется на MODEMmPERIODROAMINGх. При этом контроллер ожидает 5 минут после передачи данных и отключает GPRS.

**Примечание.** Если период передачи данных в роуминге меньше 5 минут, то отключения GPRS не происходит.

#### Пример команды:

MODEM1ROAMINGMODE1=N;

#### Пример ответа:

MODEM1ROAMINGMODE1=N;

# MODEMmPERIODROAMINGx, PERIODROAMING, SIM2PERIODROAMING

Установка периода отправки данных по GSM-каналу в роуминге.

- Доступна через сервер и SMS.
- Версия прошивки: 01.02-а4 и выше.
- Команды запроса: GPERIODROAMING, GSIM2PERIODROAMING, GMODEMmPERIODROAMINGx.

#### Формат команды:

- PERIODROAMING=time; для SIM-карты №1 модема 1.
- SIM2PERIODROAMING=time; для SIM-карты №2 модема 1.
- MODEMmPERIODROAMINGx=time;

#### Параметры:

| m    | Номер модема: • 1 — основной модем; • 2 — второй модем, для устройств АвтоГРАФ-АСН.                                   |
|------|-----------------------------------------------------------------------------------------------------------------------|
| х    | Номер SIM-карты (1, 2).                                                                                               |
| time | Период отправки данных на сервер, в секундах (04294967295). Рекомендуется устанавливать период в диапазоне 1043200 с. |

**Примечание.** Команды PERIODROAMING и SIM2PERIODROAMING оставлены для совместимости с бортовыми контроллерами АвтоГРАФ предыдущих версий.

#### Пример команды:

PERIODROAMING=300;

#### Пример ответа:

PERIODROAMING=300;

**Примечание.** Следует учитывать, что при установке для параметра **time** значения, превышающего сутки, выдерживание периода не гарантируется из-за автоматического ежесуточного перезапуска контроллера.

#### **FULLONLINE**

Включение режима «Полный онлайн».

- В этом режиме любая сделанная запись (координатная или дополнительная) передается сразу на сервер, не дожидаясь окончания периода отправки данных.
- Доступна через сервер и SMS.
- Версия прошивки: 01.02-а4 и выше.
- Команда запроса: GFULLONLINE.

#### Формат команды:

FULLONLINE=a;

#### Параметры:

|   | Состояние режима:                                                          |
|---|----------------------------------------------------------------------------|
| a | • 0 — режим выключен, передача данных идет с заданными периодом;           |
|   | • 1 — режим включен, любая сделанная запись сразу же передается на сервер. |

#### Пример команды:

FULLONLINE=0;

## Пример ответа:

FULLONLINE=0;

**Внимание!** Включение режима «Полный онлайн» значительно увеличивает передаваемый трафик!

#### **ALIAS**

Установка имени контроллера.

- Доступна через сервер и SMS.
- Версия прошивки: 01.02-а4 и выше.
- Команда запроса: GALIAS.

## Формат команды:

ALIAS=alias;

## Параметры:

| alias | Имя контроллера (не более 16 символов). Имя контроллера может содержать только буквы латинского алфавита (строчные и заглавные) и цифры (09). |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------|
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------|

## Пример команды:

ALIAS=Taxi023;

# Пример ответа:

ALIAS=Taxi023;

#### **SMSFORMAT**

Установка формата координат в SMS-сообщениях.

- Доступна через сервер и SMS.
- Версия прошивки: 01.02-а4 и выше.
- Команда запроса: GSMSFORMAT.

## Формат команды:

SMSFORMAT=link;

#### Параметры:

| link | Формат координат в SMS-сообщении, отправляемых контроллером по запросу или при запрограммированных событиях. Необходимо указать ссылку на один из перечисленных сервисов, заменив широту на %AGLAT%, долготу — на %AGLON%: Google-Спутник, Google-Карты, Яндекс-Спутник, Яндекс-Карты. |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

## Пример команды:

SMSFORMAT=http://maps.yandex.ru/?text=%AGLAT%,%AGLON%&l=map;

## Пример ответа:

SMSFORMAT=http://maps.yandex.ru/?text=%AGLAT%,%AGLON%&l=map;

#### **GSMSTAGE**

Установка статуса модема 1.

- Доступна через сервер и SMS.
- Версия прошивки: 01.10-а2 и выше.
- Команда запроса: GGSMSTAGE.

## Формат команды:

GGSMSTAGE[=a,b];

#### Параметры:

| a | Если равен 1, то внеочередная отправка данных.                                |
|---|-------------------------------------------------------------------------------|
| b | Если равен 0, то переключение на SIM1. Если равен 1, то переключение на SIM2. |

#### Формат ответа:

GSMSTAGE=p1,p2,p3,p4,p5,p6;

## Параметры:

| p1 | Максимальный шаг работы GSM модема с момента перезагрузки питания модема (см. GsmStages).                                    |
|----|------------------------------------------------------------------------------------------------------------------------------|
| p2 | Номер текущей SIM-карты: • 0 — SIM1; • 1 — SIM2.                                                                             |
| р3 | Текущий шаг работы модема (см. GsmStages).                                                                                   |
| p4 | Параметр RSSI:  • 0: —115 дБм или менее;  • 1: —111 дБм;  • 230: —110—54 дБм;  • 31: —52 дБм или более;  • 99: не определен. |
| р5 | Параметр BER. Значения 07:                                                                                                   |
| p6 | Резерв.                                                                                                                      |

## Примеры команды:

GGSMSTAGE;

GGSMSTAGE=0,0;

## Пример ответа:

GSMSTAGE=3,0,3,29,1,0;

#### **MODEMmSTATUS**

Запрос статуса GSM связи.

- Доступна через сервер и SMS.
- Версия прошивки: 01.02-а4 и выше.

#### Формат команды:

GMODEMmSTATUS;

#### Формат ответа:

MODEMmSTATUS=RSSI,Q,S,P,G,R;

# Параметры:

| m    | Номер модема: • 1 — основной модем; • 2 — второй модем, для устройств АвтоГРАФ-АСН. |
|------|-------------------------------------------------------------------------------------|
| RSSI | Значение RSSI (0–127).                                                              |
| Q    | Значение signalQuality (099).                                                       |
| S    | Номер SIM-карты (1 или 2).                                                          |
| P    | Модем включен (0 или 1).                                                            |
| G    | GPRS активен (0 или 1).                                                             |
| R    | Роуминг (0 или 1).                                                                  |

## Пример команды:

GMODEM1STATUS;

## Пример ответа:

MODEM1STATUS=0,85,1,1,1,0;

#### **GSMmRESTART**

Перезапуск модема. Сбрасывает статус модема (ответы  $\underline{\mathsf{GSMSTAGE}}$  и MODEM1STATUS) и пробуждает его от ожидания.

- Доступна через сервер и SMS.
- Версия прошивки: 01.02-а4 и выше.

#### Формат команды:

GSMmRESTART;

## Формат ответа:

GSMmRESTART=status;

## Параметры:

| m      | Номер модема: • 1 — основной модем; • 2 — второй модем, для устройств АвтоГРАФ-АСН.     |
|--------|-----------------------------------------------------------------------------------------|
| status | Результат действия:  • 1 — команда на перезапуск обработана;  • 0 — модем не обнаружен. |

## Пример команды:

GSM1RESTART;

## Пример ответа:

GSM1RESTART=1;

#### **MODEMmSIMxHOMEn**

Установка идентификаторов домашних операторов SIM-карты.

- Доступна через сервер и SMS.
- Версия прошивки: 13.18 и выше.
- Команда запроса: GMODEMmSIMxHOMEn.

## Формат команды:

MODEMmSIMxHOMEn=operator;

#### Параметры:

| m        | Номер модема: • 1 — основной модем; • 2 — второй модем, для устройств АвтоГРАФ-АСН.                                                                             |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| х        | Номер SIM-карты (1, 2).                                                                                                                                         |
| n        | Порядковый номер поля (0125).                                                                                                                                   |
| operator | Идентификатор (MNC+MCC) домашней сети SIM-карты. Поля должны быть заполнены по порядку, без пропусков. Если поле не используется, то следует ввести значение 0. |

# Пример команды:

MODEM1SIM1HOME01=25001;

## Пример ответа:

MODEM1SIM1HOME01=25001;

#### **MODEMmSIMxPRIORITYn**

Установка идентификаторов роуминговых операторов SIM-карты.

- Доступна через сервер и SMS.
- Версия прошивки: 13.18 и выше.
- Команда запроса: GMODEMmSIMxPRIORITYn.

## Формат команды:

MODEMmSIMxPRIORITYn=operator;

#### Параметры:

| m        | Номер модема: • 1 — основной модем; • 2 — второй модем, для устройств АвтоГРАФ-АСН.                                                                                |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| х        | Номер SIM-карты (1, 2).                                                                                                                                            |
| n        | Порядковый номер поля (0175).                                                                                                                                      |
| operator | Идентификатор (MNC+MCC) роуминговой сети SIM-карты. Поля должны быть заполнены по порядку, без пропусков. Если поле не используется, то следует ввести значение 0. |

# Пример команды:

MODEM1SIM1PRIORITY01=25002;

## Пример ответа:

MODEM1SIM1PRIORITY01=25002;

#### **MODEMmSIMxFORBIDDENn**

Установка идентификаторов запрещенных операторов SIM-карты.

- Доступна через сервер и SMS.
- Версия прошивки: 13.18 и выше.
- Команда запроса: GMODEMmSIMxFORBIDDENn.

## Формат команды:

MODEMmSIMxFORBIDDENn=operator;

#### Параметры:

| m        | Номер модема: • 1 — основной модем; • 2 — второй модем, для устройств АвтоГРАФ-АСН.                                                                                |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| х        | Номер SIM-карты (1, 2).                                                                                                                                            |
| n        | Порядковый номер поля (0125).                                                                                                                                      |
| operator | Идентификатор (MNC+MCC) запрещенной сети SIM-карты. Поля должны быть заполнены по порядку, без пропусков. Если поле не используется, то следует ввести значение 0. |

# Пример команды:

MODEM1SIM1FORBIDDEN01=25002;

## Пример ответа:

MODEM1SIM1FORBIDDEN01=25002;

#### **MODEMmSIMxSELECTMODE**

Установка режима работы с разными операторами.

- Доступна через сервер и SMS.
- Версия прошивки: 13.18 и выше.
- Команда запроса: GMODEMmSIMxSELECTMODE.

## Формат команды:

MODEMmSIMxSELECTMODE=mode;

#### Параметры:

| m    | Номер модема: • 1 — основной модем; • 2 — второй модем, для устройств АвтоГРАФ-АСН. |
|------|-------------------------------------------------------------------------------------|
| x    | Номер SIM-карты (1, 2).                                                             |
| mode | Режим работы с разными операторами (см. GsmSimSelectMode).                          |

## Пример команды:

MODEM1SIM1SELECTMODE=2;

## Пример ответа:

MODEM1SIM1SELECTMODE=2;

#### **MODEMMNETINFOPERIOD**

Установка периода записи параметров сети GSM.

- Доступна через сервер и SMS.
- Версия прошивки: 13.34 и выше.
- Команда запроса: GMODEMmNETINFOPERIOD.

#### Формат команды:

MODEMmNETINFOPERIOD=x;

#### Параметры:

| m | Номер модема: • 1 — основной модем; • 2 — второй модем, для устройств АвтоГРАФ-АСН.                                    |
|---|------------------------------------------------------------------------------------------------------------------------|
| x | Период записи в секундах (04294967295). 0 — запись отключена. Рекомендуется устанавливать период в диапазоне 303600 с. |

#### Пример команды:

MODEM1NETINFOPERIOD=30;

#### Пример ответа:

MODEM1NETINFOPERIOD=30;

**Примечание.** Если модем отключен (командой, из-за отсутствия питания и т. д.), то запись выполняться не будет.

**Примечание.** Следует учитывать, что при установке для параметра **х** значения, превышающего сутки, выдерживание периода не гарантируется из-за автоматического ежесуточного перезапуска контроллера.

## **MODEMmUPDATEFW**

Обновление ПО GSM модема.

- Доступна через сервер и SMS.
- Версия прошивки: 13.34 и выше.
- Команда запроса: —

## Формат команды:

MODEMmUPDATEFW;

#### Формат ответа:

MODEMmUPDATEFW=status;

## Параметры:

| m      | Номер модема: • 1 — основной модем; • 2 — второй модем, для устройств АвтоГРАФ-АСН. |
|--------|-------------------------------------------------------------------------------------|
| status | Статус обработки команды: 1 — запущено обновление ПО.                               |

#### Пример команды:

MODEM2UPDATEFW;

## Пример ответа:

MODEM2UPDATEFW=1;

# **GsmSimSelectMode**

Режимы работы с разными операторами.

| GSSM_SEND_ANY = 0           | 0 — подключать GPRS и передавать с любым оператором.                      |
|-----------------------------|---------------------------------------------------------------------------|
| GSSM_SEND_NOT_BLACKLIST = 1 | 1 — подключать GPRS и передавать с любым оператором не из черного списка. |
| GSSM_SEND_IN_LIST = 2       | 2 — подключать GPRS и передавать только с операторами из списка.          |

# GsmStages

Статусы и ошибки модема.

| STAGE_GSM_OFF = 0                  | 0 — модем отключен.                                                                       |
|------------------------------------|-------------------------------------------------------------------------------------------|
| STAGE_GSM_ON                       | 1 — питание на модем подано.                                                              |
| STAGE_GSM_WORKING                  | 2 — модем работает и отвечает.                                                            |
| STAGE_GSM_PIN_ENTERED              | 3 — введен PIN код.                                                                       |
| STAGE_GSM_CONFIG_ENTERED           | 4 — настройки введены.                                                                    |
| STAGE_GSM_NET_REGISTERED           | 5 — модем зарегистрирован в сети.                                                         |
| STAGE_GSM_GPRS_PRESENT             | 6 — наличие GPRS в сети.                                                                  |
| STAGE_GSM_GPRS_ON                  | 7 — модем подключен по GPRS.                                                              |
| STAGE_GSM_SERVER_CONNECTED         | 8 — модем подключен к параллельному серверу.                                              |
| STAGE_GSM_SERVER_SENT              | 9 — данные отправлены на сервер, получение ответа.                                        |
| STAGE_GSM_ANSWER_RECEIVED          | 10 — ответ получен, данные успешно переданы.                                              |
| STAGE_GSM_ERROR_POWER = 0x00010000 | 65536 — плохое питание модема.                                                            |
| STAGE_GSM_ERROR_PG                 | 65537 — сбой монитора питания модема.                                                     |
| STAGE_GSM_ERROR_NOT_ANSWER         | 65538 — модем не отвечает на команды.                                                     |
| STAGE_GSM_ERROR_NO_SIM             | 65539 — SIM-карта отсутствует.                                                            |
| STAGE_GSM_ERROR_WRONG_PIN          | 65540 — ошибка при вводе PIN кода.                                                        |
| STAGE_GSM_ERROR_NEED_PUK           | 65541 — требуется РИК код.                                                                |
| STAGE_GSM_ERROR_SIM_ERROR          | 65542 — неизвестная ошибка SIM-карты.                                                     |
| STAGE_GSM_ERROR_BSEND_TIMEOUT      | 65543 — требуется передача данных, однако передачи данных нет длительное время.           |
| STAGE_GSM_ERROR_BSEND_CHECK        | 65544 — длительное отсутствие возможности передачи данных.                                |
| STAGE_GSM_ERROR_LAST_REGISTER      | 65545 — отсутствие регистрации в сети GSM.                                                |
| STAGE_GSM_ERROR_CGATTT_COUNTER     | 65546 — длительное отсутствие статуса GPRS в сети.                                        |
| STAGE_GSM_ERROR_SGACT_COUNTER      | 65547 — множественная ошибка включения GPRS.                                              |
| STAGE_GSM_ERROR_SO_COUNTER         | 65548 — множественная ошибка подключения к серверу.                                       |
| STAGE_GSM_ERROR_SD_COUNTER         | 65549 — длительное отсутствие подключения к серверу.                                      |
| STAGE_GSM_ERROR_SEND_TRIES         | 65550 — подключение к серверу проходит, но передачи данных нет.                           |
| STAGE_GSM_ERROR_OPERATOR_FORBIDDEN | 65551 — передача данных с текущим оператором запрещена (вкладка «Приоритеты в роуминге»). |
| STAGE_GSM_ERROR_NOT_SERVICED       | 65552 — контроллер не обслуживается на сервере.                                           |
| STAGE_GSM_ERROR_WRONG_PASSWORD     | 65553 — пароль на сервере и в контроллере не совпадает.                                   |
| STAGE_GSM_DOWNLOADING_UPDATE       | Загрузка файлов обновлений модема.                                                        |
| STAGE_GSM_UPDATING                 | Установка обновлений модема.                                                              |
| STAGE_GSM_UPDATING_SUCCESS         | Прошивка модема обновлена успешно.                                                        |
| STAGE_GSM_UPDATING_FAIL            | Не удалось обновить прошивку модема.                                                      |
| T-                                 | î .                                                                                       |

# Навигация

| Список команд   | Описание                                                                                            |
|-----------------|-----------------------------------------------------------------------------------------------------|
| GLONASSMODE     | Установка режима работы приемника.                                                                  |
| NAVMODE         | Установка режима работы приемника.                                                                  |
| SUPPORTEDNAV    | Запрос режимов работы, поддерживаемых приемником.                                                   |
| NAVDISABLE      | Отключение навигационного приемника.                                                                |
| EXTRECEIVER     | Установка режима работы внешнего приемника координат, подключенного по шине RS-485.                 |
| DYNAMICMODE     | Установка динамического режима работы приемника.                                                    |
| GNSTIME         | Запрос времени навигационного приемника.                                                            |
| NAVDATUM        | Назначение системы координат (датум) для навигационного приемника.                                  |
| NAVGEOID        | Учет отклонения геоида от эллипсоида при записи высоты.                                             |
| NAVMINELEVATION | Установка минимального значения угла возвышения (угла отсечки) навигационных космических аппаратов. |
| NAVPOWEROFFTIME | Установка задержки отключения питания навигационного приемника после выключения зажигания.          |
| NAVTIMEOUT      | Установка задержки сброса навигационного приемника при отсутствии достоверных координат.            |
| GNSCONTROL      | Контроль работы навигационного приемника.                                                           |
| NAVFILTERSN     | Установка минимального количества спутников для фильтрации координат.                               |
| NAVFILTERHDOP   | Установка уровня отклонения точности (HDOP) для фильтрации координат.                               |
| NAVFILTERSPEED  | Установка максимальной скорости для фильтрации координат.                                           |
| NAVFILTERACCEL  | Установка изменения скорости для фильтрации координат.                                              |
| NAVFILTERDIST   | Установка максимального перемещения для фильтрации координат.                                       |
| NAVFILTERSTICK  | Установка продолжительности фильтрации после срабатывания любого из фильтров.                       |
| NAVFILTERBACK   | Установка продолжительности отбраковки координат перед срабатыванием любого из фильтров.            |

| Список групп параметров | Описание                             |
|-------------------------|--------------------------------------|
| DynamicMode             | Типы динамического режима приемника. |
| NavGnss                 | Типы навигационных спутников.        |

#### **GLONASSMODE**

Установка режима работы приемника.

- Доступна через сервер и SMS.
- Версия прошивки: 01.02-а4 и выше.
- Команда запроса: GGLONASSMODE.

#### Формат команды:

GLONASSMODE=mode;

#### Параметры:

| mode | Режим работы приемника:  • 0 — режим работы в сложных условиях навигации (с прошивки 13.37 или 1.22 для контроллеров АвтоГРАФ-Mobile X); |
|------|------------------------------------------------------------------------------------------------------------------------------------------|
|      | <ul> <li>5 — приемник в режиме ГЛОНАСС+GPS;</li> <li>6 — приемник в режиме только ГЛОНАСС;</li> </ul>                                    |
|      | • 7 — приемник в режиме только GPS.                                                                                                      |

**Примечание.** Начиная с прошивки 13.37 (1.22 для контроллеров АвтоГРАФ-Mobile X) и выше рекомендуется использовать команду NAVMODE.

**Примечание.** Команда GLONASSMODE в этих контроллерах оставлена для совместимости.

#### Пример команды:

GLONASSMODE=5;

#### Пример ответа:

GLONASSMODE=5;

#### **NAVMODE**

Установка режима работы приемника.

- Доступна через сервер и SMS.
- Версия прошивки: 13.37 и выше.
- Команда запроса: GNAVMODE.

# Формат команды:

NAVMODE=mode;

# Параметры:

| -    |                                                 |
|------|-------------------------------------------------|
|      | Режим работы приемника. Сумма значений NavGnss: |
|      | • 1 — GPS;                                      |
|      | • 2 — ГЛОНАСС;                                  |
|      | • 3 — ГЛОНАСС + GPS;                            |
|      | • 4 — Galileo;                                  |
|      | • 5 — Galileo + GPS;                            |
|      | • 6 — Galileo + ГЛОНАСС;                        |
|      | • 7 — Galileo + ГЛОНАСС + GPS;                  |
|      | • 8 — Beidou;                                   |
|      | • 9 — Beidou + GPS;                             |
|      | • 10 — Beidou + ГЛОНАСС;                        |
|      | • 11 — Beidou + ГЛОНАСС + GPS;                  |
|      | • 12 — Beidou + Galileo;                        |
|      | • 13 — Beidou + Galileo + GPS;                  |
|      | • 14 — Beidou + Galileo + ГЛОНАСС;              |
|      | • 15 — Beidou + Galileo + ГЛОНАСС + GPS;        |
| mode | • 16 — QZSS;                                    |
|      | • 17 — QZSS + GPS;                              |
|      | • 18 — QZSS + ГЛОНАСС;                          |
|      | • 19 — QZSS + ГЛОНАСС + GPS;                    |
|      | • 20 — QZSS + Galileo;                          |
|      | • 21 — QZSS + Galileo + GPS;                    |
|      | • 22 — QZSS + Galileo + ГЛОНАСС;                |
|      | • 23 — QZSS + Galileo + ГЛОНАСС + GPS;          |
|      | • 24 — QZSS + Beidou;                           |
|      | • 25 — QZSS + Beidou + GPS;                     |
|      | • 26 — QZSS + Beidou + ГЛОНАСС;                 |
|      | • 27 — QZSS + Beidou + ГЛОНАСС + GPS;           |
|      | • 28 — QZSS + Beidou + Galileo;                 |
|      | • 29 — QZSS + Beidou + Galileo + GPS;           |
|      | • 30 — QZSS + Beidou + Galileo + ГЛОНАСС;       |
|      | • 31 — QZSS + Beidou + Galileo + ГЛОНАСС + GPS. |
|      | L                                               |

(Продолжение для **mode**) Для совместимости (и если неизвестен тип приемника) оставлены:

- 48 режим работы в сложных условиях навигации;
- 53 приемник в режиме ГЛОНАСС+GPS;
- 54 приемник в режиме только ГЛОНАСС;
- 55 приемник в режиме только GPS.

#### Пример команды:

NAVMODE=31;

# Пример ответа:

NAVMODE=31;

#### **SUPPORTEDNAV**

Запрос режимов работы, поддерживаемых приемником.

- Доступна через сервер и SMS.
- Версия прошивки: 13.36 и выше.
- Команда запроса: GSUPPORTEDNAV.

#### Формат ответа:

SUPPORTEDNAV=nav:mode1,mode2,...,modeN;

#### Параметры:

| <b>nav</b> Тип навигационного приемника, строка. |                                                                                                |
|--------------------------------------------------|------------------------------------------------------------------------------------------------|
| modeN                                            | Список поддерживаемых режимов приемника, где <b>N</b> — порядковый номер режима (см. NAVMODE). |

# Пример запроса:

GSUPPORTEDNAV;

## Пример ответа:

SUPPORTEDNAV=SIM65M:1,2,3,5,9,15,17,19,21,25,31;

#### **NAVDISABLE**

Отключение навигационного приемника.

- Доступна через сервер и SMS.
- Версия прошивки: 13.29 и выше.
- Команда запроса: GNAVDISABLE.

#### Формат команды:

NAVDISABLE=x;

#### Параметры:

| х | Отключить навигационный приемник (1 — приемник отключен, 0 — приемник включен). |
|---|---------------------------------------------------------------------------------|
|   |                                                                                 |

**Примечание.** Отключение может применяться для уменьшения энергопотребления и/или количества записей событий пересброса приемника (например, при работе в боксе или шахте, где нет сигнала спутников).

#### Пример команды:

NAVDISABLE=0;

## Пример ответа:

NAVDISABLE=0;

#### **EXTRECEIVER**

Установка режима работы внешнего приемника координат, подключенного по шине RS-485.

- Доступна через сервер и SMS.
- Версия прошивки: 01.12 и выше.
- Команда запроса: GEXTRECEIVER.

# Формат команды:

EXTRECEIVER=mode;

## Параметры:

|      | Режим работы приемника: • 0 — приемник не используется; |
|------|---------------------------------------------------------|
| mode | • 1, 2 — приемник в режиме ГЛОНАСС+GPS;                 |
|      | • 3 — приемник в режиме только ГЛОНАСС;                 |
|      | • 4— приемник в режиме только GPS.                      |

## Пример команды:

EXTRECEIVER=2;

# Пример ответа:

EXTRECEIVER=2;

#### **DYNAMICMODE**

Установка динамического режима работы приемника.

- Доступна через сервер и SMS.
- Версия прошивки: 01.02-а4 и выше.
- Команда запроса: GDYNAMICMODE.

## Формат команды:

DYNAMICMODE=x;

#### Параметры:

| х | Тип динамического режима работы приемника (см. DynamicMode). |  |
|---|--------------------------------------------------------------|--|
|---|--------------------------------------------------------------|--|

## Пример команды:

DYNAMICMODE=5;

# Пример ответа:

DYNAMICMODE=5;

#### **GNSTIME**

Запрос времени навигационного приемника.

- Доступна через сервер и SMS.
- Версия прошивки: 01.02-а4 и выше.
- Команда запроса: GGNSTIME, GNSTIME. Обе команды работают одинаково на запрос.

#### Формат ответа:

GNSTIME=time\_t;

## Параметры:

| rume t | Время с приемника в формате time_t. В случае недостоверного приема координат время равно 0. |
|--------|---------------------------------------------------------------------------------------------|
|--------|---------------------------------------------------------------------------------------------|

**Примечание.** Тип данных time\_t используется для представления целого числа — количества секунд, прошедших после полуночи 00:00, 1 января 1970 года в формате GMT.

## Пример команды:

GGNSTIME;

#### Пример ответа:

GNSTIME=1643871799;

### **NAVDATUM**

Назначение системы координат (датум) для навигационного приемника.

- Доступна через сервер и SMS.
- Версия прошивки: 13.29 и выше.
- Команда запроса: GNAVDATUM.

## Формат команды:

NAVDATUM=x;

### Параметры:

|   | Система координат (датум) навигационного приемника: |
|---|-----------------------------------------------------|
| x | • 84 — система координат WGS-84;                    |
|   | • 90 — система координат П3-90.                     |

# Пример команды:

NAVDATUM=84;

# Пример ответа:

NAVDATUM=84;

### **NAVGEOID**

Учет отклонения геоида от эллипсоида при записи высоты.

- Доступна через сервер и SMS.
- Версия прошивки: 13.37 и выше.
- Команда запроса: GNAVGEOID.

# Формат команды:

NAVGEOID=g;

## Параметры:

|                | Учитывать отклонение геоида от эллипсоида при записи высоты:                         |
|----------------|--------------------------------------------------------------------------------------|
| l <sub>a</sub> | • 0 — не учитывать (будет записываться высота над эллипсоидом);                      |
| g              | • 1 — учитывать, если поддерживает приемник (будет записываться высота над геоидом). |
|                | геоидом).                                                                            |

# Пример команды:

NAVGEOID=1;

# Пример ответа:

NAVGEOID=1;

### **NAVMINELEVATION**

Установка минимального значения угла возвышения (угла отсечки) навигационных космических аппаратов.

- Доступна через сервер и SMS.
- Версия прошивки: 13.29 и выше.
- Команда запроса: GNAVMINELEVATION.

## Формат команды:

NAVMINELEVATION=x;

### Параметры:

| х | Минимальное значение угла возвышения (угла отсечки) навигационных космических аппаратов, в градусах (090). |
|---|------------------------------------------------------------------------------------------------------------|
|   | needin teetan amapares, s. pagyean (emse).                                                                 |

## Пример команды:

NAVMINELEVATION=5;

## Пример ответа:

NAVMINELEVATION=5;

#### **NAVPOWEROFFTIME**

Установка задержки отключения питания навигационного приемника после выключения зажигания.

- Доступна через сервер и SMS.
- Версия прошивки: 13.29 и выше.
- Команда запроса: GNAVPOWEROFFTIME.

#### Формат команды:

NAVPOWEROFFTIME=t;

### Параметры:

| зажигания (внешнего питания), в миллисекундах (0200000000). | задержка отключения питания навигационного приемника после выключения |
|-------------------------------------------------------------|-----------------------------------------------------------------------|
|-------------------------------------------------------------|-----------------------------------------------------------------------|

### Пример команды:

NAVPOWEROFFTIME=200000000;

### Пример ответа:

NAVPOWEROFFTIME=200000000;

**Примечание.** Следует учитывать, что при установке для параметра **t** значения, превышающего сутки, выдерживание заданного временного интервала не гарантируется из-за автоматического ежесуточного перезапуска контроллера.

### **NAVTIMEOUT**

Установка задержки сброса навигационного приемника при отсутствии достоверных координат.

- Доступна через сервер и SMS.
- Версия прошивки: 13.33 и выше.
- Команда запроса: GNAVTIMEOUT.

## Формат команды:

NAVTIMEOUT=t;

### Параметры:

| t | Задержка сброса навигационного приемника при отсутствии достоверных координат, в секундах (065534). Рекомендуется устанавливать задержку в диапазоне 6043200 с. |
|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|

### Пример команды:

NAVTIMEOUT=720;

### Пример ответа:

NAVTIMEOUT=720;

**Примечание.** Следует учитывать, что при установке для параметра **t** значения, превышающего сутки, выдерживание заданного временного интервала не гарантируется из-за автоматического ежесуточного перезапуска контроллера.

### **GNSCONTROL**

Контроль работы навигационного приемника.

- Доступна через сервер и SMS.
- Версия прошивки: 01.02-а4 и выше.
- Команда запроса: GGNSCONTROL, GNSCONTROL.

### Формат ответа:

 $\label{lem:control} GNSCONTROL = receiver Source, status, antenna Status, pos Mode, gnss Mode, num SV, hDop, tt Time, latitude, id NS, longitude, id EW, speed, alt, course;$ 

### Параметры:

|                | Источник координат:                                                                  |
|----------------|--------------------------------------------------------------------------------------|
| receiverSource | • 0 — внутренний;                                                                    |
|                | • 1 — внешний.                                                                       |
|                | Статус приема:                                                                       |
| status         | • А — есть прием;                                                                    |
|                | • V — нет приема.                                                                    |
|                | Состояние навигационной антенны:                                                     |
|                | • 0 — не определено;                                                                 |
| antennaStatus  | • 1 — нормально подключена;                                                          |
|                | • 2 — отключена;                                                                     |
|                | • 3 — короткое замыкание.                                                            |
|                | Индикатор режима:                                                                    |
|                | • А — автономный;                                                                    |
|                | • D — дифференциальный;                                                              |
|                | • Е — аппроксимация;                                                                 |
| posMode        | • F — плавающий дифференциальный;                                                    |
| posmode        | • М — ручной ввод;                                                                   |
|                | • P — точный;                                                                        |
|                | • R — RTK (дифференциальный);                                                        |
|                | • S — симулятор;                                                                     |
|                | • N — недостоверные данные.                                                          |
|                | Режим приема координат. До прошивки 13.37:                                           |
|                | • 0 — не определен;                                                                  |
|                | • 1 — только GPS;                                                                    |
|                | • 2 — только ГЛОНАСС;                                                                |
|                | • 3 — совместный режим.                                                              |
| gnssMode       |                                                                                      |
|                | С прошивки 13.37 и выше: сумма значений <u>NavGnss,</u> для совместимости оставлены: |
|                | • 53 — приемник в режиме ГЛОНАСС+GPS;                                                |
|                | • 54 — приемник в режиме только ГЛОНАСС;                                             |
|                | • 55 — приемник в режиме только GPS.                                                 |

| numSV     | Количество видимых спутников.                                                                                                              |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------|
| hDop      | HDOP (погрешность) приема координат.                                                                                                       |
| ttTime    | Время с приемника, в формате time_t (POSIX time, в секундах с 1 января 1970 года). В случае недостоверного приема координат время равно 0. |
| latitude  | Широта в формате ГГММ.ммммммм.                                                                                                             |
| idNS      | Северная (N) или южная (S) широта.                                                                                                         |
| longitude | Долгота в формате ГГММ.ммммммм.                                                                                                            |
| idEW      | Восточная (E) или западная (W) долгота.                                                                                                    |
| speed     | Скорость, в км/ч.                                                                                                                          |
| alt       | Высота над уровнем моря, в метрах.                                                                                                         |
| course    | Азимут движения, в градусах.                                                                                                               |

# Пример команды:

GNSCONTROL;

# Пример ответа:

 ${\sf GNSCONTROL} = 0, {\sf A}, {\sf 1}, {\sf A}, {\sf 3}, {\sf 12}, 0.9, {\sf 1650538008}, {\sf 5510.4168000}, {\sf N}, {\sf 6123.0285600}, {\sf E}, 0.0, {\sf 233.6}, 0.0;$ 

### **NAVFILTERSN**

Установка минимального количества спутников для фильтрации координат.

- Доступна через сервер и SMS.
- Версия прошивки: 13.36 и выше.
- Команда запроса: GNAVFILTERSN.

## Формат команды:

NAVFILTERSN=n;

### Параметры:

| n | Минимальное количество спутников, необходимое для принятия навигационного решения (460). При меньшем количестве спутников координаты будут считаться недостоверными. |
|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|

# Пример команды:

NAVFILTERSN=6;

## Пример ответа:

NAVFILTERSN=6;

### **NAVFILTERHDOP**

Установка уровня отклонения точности (HDOP) для фильтрации координат.

- Доступна через сервер и SMS.
- Версия прошивки: 13.36 и выше.
- Команда запроса: GNAVFILTERHDOP.

## Формат команды:

NAVFILTERHDOP=h;

### Параметры:

|   | <b>h</b> | Максимальный уровень отклонения точности (HDOP) (0,1100,0). При большем |
|---|----------|-------------------------------------------------------------------------|
| ١ | n        | отклонении координаты будут считаться недостоверными.                   |

### Пример команды:

NAVFILTERHDOP=4.0;

## Пример ответа:

NAVFILTERHDOP=4.0;

### **NAVFILTERSPEED**

Установка максимальной скорости для фильтрации координат.

- Доступна через сервер и SMS.
- Версия прошивки: 13.36 и выше.
- Команда запроса: GNAVFILTERSPEED.

## Формат команды:

NAVFILTERSPEED=s;

### Параметры:

|           | Максимальная скорость, в км/ч (01000). При большей скорости координаты будут |
|-----------|------------------------------------------------------------------------------|
| <b>IS</b> | считаться недостоверными.                                                    |

## Пример команды:

NAVFILTERSPEED=200.0;

## Пример ответа:

NAVFILTERSPEED=200.0;

### **NAVFILTERACCEL**

Установка изменения скорости для фильтрации координат.

- Доступна через сервер и SMS.
- Версия прошивки: 13.36 и выше.
- Команда запроса: GNAVFILTERACCEL.

## Формат команды:

NAVFILTERACCEL=a;

### Параметры:

|   | 3 | Максимальное изменение скорости за секунду, в км/ч (01000). При большем изменении скорости координаты будут считаться недостоверными. |
|---|---|---------------------------------------------------------------------------------------------------------------------------------------|
| ı |   | изменении скорости координаты оудут считаться недостоверными.                                                                         |

## Пример команды:

NAVFILTERACCEL=20.0;

## Пример ответа:

NAVFILTERACCEL=20.0;

### **NAVFILTERDIST**

Установка максимального перемещения для фильтрации координат.

- Доступна через сервер и SMS.
- Версия прошивки: 13.36 и выше.
- Команда запроса: GNAVFILTERDIST.

## Формат команды:

NAVFILTERDIST=d;

# Параметры:

| ۵ | Максимальное перемещение за секунду, в метрах (01000). При большем |
|---|--------------------------------------------------------------------|
| ď | перемещении координаты будут считаться недостоверными.             |

## Пример команды:

NAVFILTERDIST=50.0;

## Пример ответа:

NAVFILTERDIST=50.0;

### **NAVFILTERSTICK**

Установка продолжительности фильтрации после срабатывания любого из фильтров.

- Доступна через сервер и SMS.
- Версия прошивки: 13.36 и выше.
- Команда запроса: GNAVFILTERSTICK.

## Формат команды:

NAVFILTERSTICK=t;

### Параметры:

|  | Продолжительность фильтрации, в секундах (060). После срабатывания фильтров |
|--|-----------------------------------------------------------------------------|
|  | координаты будут считаться недостоверными в течение этого времени.          |

## Пример команды:

NAVFILTERSTICK=1;

## Пример ответа:

NAVFILTERSTICK=1;

### **NAVFILTERBACK**

Установка продолжительности отбраковки координат перед срабатыванием любого из фильтров.

- Доступна через сервер и SMS.
- Версия прошивки: 13.36 и выше.
- Команда запроса: GNAVFILTERBACK.

## Формат команды:

NAVFILTERBACK=t;

# Параметры:

|  | Продолжительность фильтрации, в секундах (04). В течение этого времени до |
|--|---------------------------------------------------------------------------|
|  | срабатывания фильтров координаты будут считаться недостоверными.          |

### Пример команды:

NAVFILTERBACK=1;

## Пример ответа:

NAVFILTERBACK=1;

# DynamicMode

Типы динамического режима приемника.

| DM_PORTABLE = 0   | 0 — для применения при низком ускорении объекта (например, в портативных контроллерах). Режим подходит для большинства ситуаций.                         |
|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| DM_STATIONARY = 2 | 2 — для применения на стационарных объектах со скоростью равной 0 м/с. Предполагается, что объект неподвижен.                                            |
| DM_PEDESTRIAN = 3 | 3 — для применения при низком ускорении и скорости объекта (например, пешеходами). Предполагается низкое ускорение.                                      |
| DM_AUTOMOTIVE = 4 | 4 — для применения на подвижных объектах типа пассажирских транспортных средств с низким вертикальным ускорением.                                        |
| DM_SEA = 5        | 5 — для применения на морском транспорте с нулевым вертикальным ускорением. По умолчанию вертикальная скорость равна 0. Расчет относительно уровня моря. |
| DM_AIR_1G = 6     | 6 — для применения в условиях, когда динамический диапазон и вертикальное ускорение выше, чем на пассажирском транспорте.                                |
| DM_AIR_2G = 7     | 7 — для применения на воздушном транспортном средстве.                                                                                                   |
| DM_AIE_4G = 8     | 8 — только для применения в чрезвычайно меняющихся условиях.                                                                                             |
| DM_WRIST = 9      | 9 — только для применения в устройствах, носимых на запястье. Приемник отфильтрует движение руки.                                                        |

## **NavGnss**

Типы навигационных спутников.

| NG_GPS = 1     | 1 — GPS.     |
|----------------|--------------|
| NG_GLONASS = 2 | 2 — ГЛОНАСС. |
| NG_GALILEO = 4 | 4 — Galileo. |
| NG_BEIDOU = 8  | 8 — Beidou.  |
| NG_QZSS = 16   | 16 — QZSS.   |

# Координатные записи

| Список команд | Описание                                                        |
|---------------|-----------------------------------------------------------------|
| MODEWR        | Установка режима записи координат.                              |
| MODEWIDE      | Включение режима расширенных записей.                           |
| MODESTICK     | Включение режима прикрепления координат к прочим записям.       |
| DISTCALC      | Включение режима записи пробега.                                |
| PERIODWR      | Установка периода (интервала) записи данных.                    |
| ADAPTIVESENSE | Установка чувствительности адаптивного режима записи координат. |
| GDISTANCE     | Запрос общего пробега контроллера.                              |

### **MODEWR**

Установка режима записи координат.

- Доступна через сервер и SMS.
- Версия прошивки: AGXX-01.02-а4 и выше.
- Команда запроса: GMODEWR.

# Формат команды:

MODEWR=mode;

### Параметры:

| mode | <ul> <li>Режим записи координат:</li> <li>А — адаптивный режим записи. В этом режиме координаты записываются с учетом характера движения: скорости, ускорения, направления движения.</li> <li>N — режим записи по времени. В этом режиме координаты записываются через равный промежуток времени независимо от характера движения.</li> </ul> |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

# Пример команды:

MODEWR=A;

# Пример ответа:

MODEWR=A;

### **MODEWIDE**

Включение режима расширенных записей.

- Команда включает режим расширенных записей. В этом режиме вместе с координатными записями выполняется и запись с вектором скорости (величиной и направлением).
- Доступна через сервер и SMS.
- Версия прошивки: AGXX-01.02-а4 и выше.
- Команда запроса: GMODEWIDE.

## Формат команды:

MODEWIDE=status;

### Параметры:

|        | Режим расширенных записей: |
|--------|----------------------------|
| status | • 0 — выключен;            |
|        | • 1 — включен.             |

### Пример команды:

MODEWIDE=1;

### Пример ответа:

MODEWIDE=1;

### **MODESTICK**

Включение режима прикрепления координат к прочим записям.

- Команда включает режим прикрепления координат к прочим записям. В этом режиме вместе с любой другой записью выполняется и запись с координатами.
- Доступна через сервер и SMS.
- Версия прошивки: 13.32 и выше.
- Команда запроса: GMODESTICK.

### Формат команды:

MODESTICK=status;

### Параметры:

|        | Режим прикрепления координат: |
|--------|-------------------------------|
| status | • 0 — выключен;               |
|        | • 1 — включен.                |

### Пример команды:

MODESTICK=1;

## Пример ответа:

MODESTICK=1;

### **DISTCALC**

Включение режима записи пробега.

- Команда включает режим расчета и записи пробега в контроллере: в этом режиме вместе с координатными записями делается и запись с пробегом (с суточным и общим).
- Доступна через сервер и SMS.
- Версия прошивки: AGXX-01.02-а4 и выше.
- Команда запроса: GDISTCALC.

## Формат команды:

DISTCALC=status;

### Параметры:

|                                                       | Режим записи пробега:                                 |
|-------------------------------------------------------|-------------------------------------------------------|
| status                                                | • 0 — запрещен;                                       |
| • 1 — разрешен, пробег подсчитывается по координатам; | • 1 — разрешен, пробег подсчитывается по координатам; |
|                                                       | • 2 — разрешен, пробег берется с шины САN автомобиля. |

## Пример команды:

DISTCALC=1;

## Пример ответа:

DISTCALC=1;

### **PERIODWR**

Установка периода (интервала) записи данных.

- Команда устанавливает период записи координат (в секундах). Эта же команда устанавливает интервал записи для адаптивного режима записи координат (в метрах).
- Доступна через сервер и SMS.
- Версия прошивки: AGXX-01.02-а4 и выше.
- Команда запроса: GPERIODWR.

### Формат команды:

PERIODWR=period;

### Параметры:

| I DATION | Период (интервал) записи данных. Диапазон настроек периода записи в секундах: |
|----------|-------------------------------------------------------------------------------|
|          |                                                                               |

### Пример команды:

PERIODWR=10;

## Пример ответа:

PERIODWR=10;

### **ADAPTIVESENSE**

Установка чувствительности адаптивного режима записи координат.

- Доступна через сервер и SMS.
- Версия прошивки: AGXX-01.02-а4 и выше.
- Команда запроса: GADAPTIVESENSE.

#### Формат команды:

ADAPTIVESENSE=sense;

#### Параметры:

sense

Чувствительность адаптивного режима, 0...500. Значение по умолчанию: 100.

- Если объект мониторинга проехал расстояние, превышающее интервал записи (в метрах), и при этом отклонение азимута движения составило более 6° или изменение скорости составило более 5 узлов (около 9 км/ч), то при sense=100 контроллер обязательно сделает координатную запись.
- Если изменение скорости и изменение азимута движения произошли одновременно, то вычисляется их суперпозиция. Это означает, что если изменение азимута составило 3° (50 % порога), а изменение скорости составило 6 км/ч (60 % порога), то контроллер сделает координатную запись, так как сумма 50 % и 60 % превышает установленный порог чувствительности **sense**=100.
- При изменении значения чувствительности меняются и пороги срабатывания. Например, если чувствительность равна 50, то контроллер будет делать запись при изменении азимута на 3° или скорости на 2,5 узла; а если чувствительность равна 200, то контроллер сделает координатную запись при изменении азимута на 12° или скорости 10 узлов.
- Кроме азимута и скорости контроллер также оценивает и другие параметры движения, на основании которых может делать дополнительные координатные записи. Благодаря дополнительным записям качество построения трека значительно возрастает.

#### Пример команды:

ADAPTIVESENSE=200;

#### Пример ответа:

ADAPTIVESENSE=200:

### **GDISTANCE**

Запрос общего пробега контроллера.

- Доступна через сервер и SMS.
- Версия прошивки: AGXX-01.02-а4 и выше.
- Команда запроса: GDISTANCE. В ответ на запрос возвращается команда DISTANCE.

## Формат ответа:

DISTANCE=distance;

## Параметры:

| distance | Пробег контроллера, в метрах. |
|----------|-------------------------------|
|----------|-------------------------------|

## Пример команды:

GDISTANCE;

# Пример ответа:

DISTANCE=241542000.0;

# Группировка данных

| Список команд | Описание                       |
|---------------|--------------------------------|
| COMPACTn      | Настройка группировки записей. |

| Список групп параметров | Описание                    |
|-------------------------|-----------------------------|
| RecordType              | Типы записей в группировке. |

#### **COMPACTn**

Настройка группировки записей.

- Команда позволяет создавать группы записей (от 1 до 4): при очередном добавлении в память контроллера записи из группы будут добавлены и остальные записи, входящие в группировку.
- Доступна через сервер и SMS.
- Версия прошивки: AGXX-01.02-а4 и выше.
- Команда запроса: GCOMPACTn.

#### Формат команды:

COMPACTn=compact\_data;

### Параметры:

| n            | Номер группировки (14).                                                                                                                                                                                                                               |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| compact_data | Настройка группировки. Битовое поле, передается в формате НЕХ (два символа на байт), начиная с нулевого бита до 256 бит, младший байт вперед. Установка определенного бита в «1» добавляет соответствующую ему запись в группировку (см. RecordType). |

**Примечание.** Контроллер проверяет группировки последовательно от первой до четвертой. Если первая группировка вызовет добавление записи из второй группировки, то вторая группировка также сработает (и так далее).

**Примечание.** Записи событий (например, записи качества вождения или события) не могут быть записаны в группировке, но могут вызывать срабатывание группировки.

**Примечание.** Срабатывание группировки автоматически инициирует координатную запись. Добавление координатной записи (тип 0) в группировку будет вызывать срабатывание группировки от самой координатной записи.

#### Пример команды:

COMPACT1=06; COMPACT3=FEFFFF;

### Пример ответа:

COMPACT1=06; COMPACT3=FEFFFF;

# RecordType

Типы записей в группировке.

| RT_ZERO = 0          | 0 — координатная запись.                                     |
|----------------------|--------------------------------------------------------------|
| RT_ANALOG_RECORD = 1 | 1 — аналоговые данные.                                       |
| RT_COUNTER12 = 2     | 2 — счетчики 1 и 2.                                          |
| RT_COUNTER34 = 3     | 3 — счетчики 3 и 4.                                          |
| RT_COUNTER56 = 5     | 5 — счетчики 5 и 6.                                          |
| RT_DRIVER_ID = 6     | 6 — идентификатор-метка (1-Wire, BLE, CAN, Modbus).          |
| RT_COUNTER78 = 7     | 7 — счетчики 7 и 8.                                          |
| RT_LLS1234 = 8       | 8 — ДУТы 1, 2, 3, 4.                                         |
| RT_LLS5678 = 9       | 9 — ДУТы 5, 6, 7, 8.                                         |
| CAN_RECORD1 = 10     | 10 — CAN 1: скорость, педаль газа, расход топлива.           |
| RT_CAN_RECORD2 = 11  | 11 — CAN 2: уровень топлива.                                 |
| CAN_RECORD3 = 12     | 12 — CAN 3: обороты, моточасы, пробег до TO, давление масла. |
| CAN_RECORD4 = 13     | 13 — CAN 4: температуры.                                     |
| CAN_RECORD5 = 14     | 14 — CAN 5: пробеги.                                         |
| RT_COLLISION = 15    | 15 — события.                                                |
| CAN_RECORD6_1 = 16   | 16 — нагрузка на колесо 1—6.                                 |
| CAN_RECORD6_2 = 17   | 17 — нагрузка на колесо 7—12.                                |
| CAN_RECORD6_3 = 18   | 18 — нагрузка на колесо 13—18.                               |
| CAN_RECORD6_4 = 19   | 19 — нагрузка на колесо 19—24.                               |
| CAN_RECORD6_5 = 20   | 20 — нагрузка на колесо 25—30.                               |
| CAN_RECORD6_6 = 21   | 21 — нагрузка на колесо 31–36.                               |
| CAN_RECORD6_7 = 22   | 22 — нагрузка на колесо 37—42.                               |
| CAN_RECORD6_8 = 23   | 23 — нагрузка на колесо 43—48.                               |
| CAN_RECORD6_9 = 24   | 24 — нагрузка на колесо 49—54.                               |
| CAN_RECORD6_10 = 25  | 25 — нагрузка на колесо 55–60.                               |
| CAN_RECORD6_11 = 26  | 26 — нагрузка на колесо 61–66.                               |
| CAN_RECORD6_12 = 27  | 27 — нагрузка на колесо 67—72.                               |
| CAN_RECORD6_13 = 28  | 28 — нагрузка на колесо 73—78.                               |
| CAN_RECORD6_14 = 29  | 29 — нагрузка на колесо 79—84.                               |
| CAN_RECORD6_15 = 30  | 30 — нагрузка на колесо 85—90.                               |
| CAN_RECORD6_16 = 31  | 31 — нагрузка на колесо 91–96.                               |
| TEMPER1234 = 36      | 36 — датчики температуры 1—4.                                |
| TEMPER5678 = 37      | 37 — датчики температуры 5—8.                                |

| RT_CAN_ERROR = 44         | 44 — CAN: ошибки.                                                                         |
|---------------------------|-------------------------------------------------------------------------------------------|
| R_CAN_CONSUP = 45         | 45 — посчитанный расход топлива по CAN.                                                   |
| R_CAN_MODE = 46           | 46 — CAN: напряжение АКБ, крутящий момент.                                                |
| R_CAN_ADDIT = 47          | 47 — CAN: температура воздуха, давление воздуха, обороты, нагрузка на двигатель, ток АКБ. |
| RT_R_PACKET_START = 48    | 48 — заголовок длинной записи (пакета с данными).                                         |
| CAN_PARAM_VALUE = 50      | 50 — параметры PALESSE.                                                                   |
| CAN_PARAM_FLAGS = 51      | 51 — флаги PALESSE.                                                                       |
| CAN_PARAM_STATISTIC = 52  | 52 — статистика PALESSE.                                                                  |
| RT_LLS_RECORD_WIDE = 53   | 53 — расширенные данные с ДУТ.                                                            |
| RECORD_OTHER_NUM = 57     | 57 — прочие числовые параметры.                                                           |
| RECORD_DISPLAY_STAT = 59  | 59 — статус внешнего дисплея.                                                             |
| RT_RECORD_TACHOGRAPH = 60 | 60 — тахограф.                                                                            |
| RECORD_TIRE_PRESSURE = 61 | 61 — давление в шинах.                                                                    |
| RT_RECORD_DRIVING = 65    | 65 — качество вождения (Eco Driving).                                                     |
| RECORD_TKAM = 66          | 66 — ТКАМ — датчик угла наклона.                                                          |
| RECORD_TKKZ = 67          | 67 — СКЗ — система контроля загрузки (ТККZ).                                              |
| RECORD_DISCR_PARAMS = 73  | 73 — дискретные параметры.                                                                |

# Вспомогательные записи

| Список групп параметров | Описание        |
|-------------------------|-----------------|
| EventRecordTypes        | Записи событий. |

# EventRecordTypes

Записи событий.

| EV_GPS_RESET = 3             | 3 — аварийный пересброс приемника.                                                                                                                                          |
|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EV_GSM_RESET = 7             | 7 — аварийное выключение GSM модема. Происходит при какой-либо неработоспособности GSM модема. Также это событие записывается при переключении с одной SIM-карты на другую. |
| EV_GPS_SLEEP_ENTRANCE = 32   | 32 — перевод навигационного приемника в спящий режим.                                                                                                                       |
| EV_DEV_START = 64            | 64 — включение контроллера.                                                                                                                                                 |
| EV_BATT_DISCHARGED = 69      | 69 — разряд батареи.                                                                                                                                                        |
| EV_DEV_STOP = 70             | 70 — выключение контроллера.                                                                                                                                                |
| EV_HIT = 94                  | 94 — удар.                                                                                                                                                                  |
| EV_FALLING_DOWN = 95         | 95 — падение.                                                                                                                                                               |
| EV_GPS_ANT_ON = 128          | 128 — антенна GPS подключена.                                                                                                                                               |
| EV_GPS_ANT_OFF = 129         | 129 — антенна GPS отключена.                                                                                                                                                |
| EV_GPS_ANT_KZ = 130          | 130 — короткое замыкание в антенне GPS.                                                                                                                                     |
| EV_TEMP_G00D = 131           | 131 — температура контроллера нормальная.                                                                                                                                   |
| EV_TEMP_EXCEED = 132         | 132 — температура вне нормальных значений.                                                                                                                                  |
| EV_TEMP_EXTREME = 133        | 133 — температура контроллера не рабочая.                                                                                                                                   |
| EV_GSM_JAMMED = 134          | 134 — глушение канала GSM.                                                                                                                                                  |
| EV_STRIKE = 135              | 135 — удар по контроллеру (или автомобилю) — ускорение составило более 2g.                                                                                                  |
| EV_ACCEL_ERROR = 136         | 136 — неработоспособность акселерометра.                                                                                                                                    |
| EV_TIMER_CORRECTED = 137     | 137 — коррекция времени во встроенном таймере.                                                                                                                              |
| EV_FIRMWARE_START = 138      | 138 — начата удаленная перепрошивка контроллера.                                                                                                                            |
| EV_FIRMWARE_END = 139        | 139 — закончена удаленная перепрошивка контроллера.                                                                                                                         |
| EV_FIRMWARE_ERROR = 140      | 140 — ошибка при удаленной перепрошивке контроллера.                                                                                                                        |
| EV_PHOTO_WORK = 141          | 141 — запрос фотографий с сервера.                                                                                                                                          |
| EV_WIFI_ERROR = 142          | 142 — ошибка Wi-Fi.                                                                                                                                                         |
| EV_PHOTO_DONE = 143          | 143 — сделан снимок.                                                                                                                                                        |
| EV_ACCEL_CALIBRATION = 144   | 144 — обновление калибровки акселерометра.                                                                                                                                  |
| EV_CHARGER_STAT_CHANGE = 145 | 145 — изменение статуса зарядного устройства.                                                                                                                               |
| EV_MB00T_START = 149         | 149 — обновление основного загрузчика началось.                                                                                                                             |
| EV_MB00T_FINISH = 150        | 150 — обновление основного загрузчика закончилось.                                                                                                                          |
| EV_MB00T_ERROR = 151         | 151 — ошибка обновления основного загрузчика.                                                                                                                               |
| EV_I2C1_ERROR = 152          | 152 — ошибка интерфейса i2c.                                                                                                                                                |
| EV_CAN_ERROR = 153           | 153 — ошибка интерфейса CAN.                                                                                                                                                |
| EV_SERIAL_ERROR = 154        | 154 — ошибка последовательного интерфейса (UART).                                                                                                                           |

| EV_EVENT = 155           | 155 — сработка настроенного события.  |
|--------------------------|---------------------------------------|
| EV_MODEM_DEBUG = 157     | 157 — отладочное событие модема.      |
| EV_EXCEPTION = 241       | 241 — перезапуск контроллера.         |
| EV_PLANNED_RESTART = 242 | 242 — начало перезапуска контроллера. |

# Адаптивная запись параметров

Адаптивный режим позволяет настроить внеочередную запись данных по заданному критерию: пересечению верхнего и нижнего порогов — чрезмерному изменению данных. По умолчанию данные записываются в память контроллера с периодом — установленным для этих данных.

**Примечание.** Подробное описание адаптивного режима приведено в Справке к конфигурационной программе АвтоГРАФ.GSMConf.

| Список команд   | Описание                                    |
|-----------------|---------------------------------------------|
| ADAPTIVE        | Настройка адаптивной записи для параметров. |
| ADAPTIVECONTROL | Контроль состояния адаптивного параметра.   |
| GLEVELVALUE     | Запрос значения уровня.                     |
| GENERICVALUE    | Запрос значения произвольного параметра.    |
| GLONGVALUE      | Запрос значения длинного параметра.         |
| GDISCRVALUE     | Запрос значения дискретного параметра.      |

| Список групп параметров        | Описание                                      |
|--------------------------------|-----------------------------------------------|
| ParamGroup                     | Группы параметров.                            |
| AdaptiveType                   | Типы параметров.                              |
| Levelld                        | Уровневые параметры.                          |
| GenericParamsId                | Идентификаторы произвольных параметров.       |
| GenericParamType               | Типы данных произвольных параметров.          |
| LongParamId                    | Длинные параметры.                            |
| DiscrParamId                   | Дискретные параметры.                         |
| AdaptiveLevelEvent_doc         | События адаптива уровневого параметра.        |
| Adaptive Level Event Flags_doc | Флаги событий адаптива уровневого параметра.  |
| AdaptiveDiscreteEvent_doc      | События адаптива дискретного параметра.       |
| AdaptiveDiscreteEventFlags_doc | Флаги событий адаптива дискретного параметра. |

### **ADAPTIVE**

Настройка адаптивной записи для параметров.

- Доступна через сервер и SMS.
- Версия прошивки: AGXX-01.02-а4 и выше.
- Команда запроса: GADAPTIVEx.

**Примечание.** Каждый тип адаптива имеет свой формат команды и ответа, а также общий формат запроса.

**Формат команды:** команда для настройки уровневого адаптива: ADAPTIVEx=a,b,c,d,e,f,g,h,i,j;

## Параметры:

| х | Номер адаптивной записи (132).                                                                                                                                                                                                                                                   |
|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| a | Тип адаптивной записи: 1 — для параметров уровня (ADAPTIVE_TYPE_LEVEL из AdaptiveType).                                                                                                                                                                                          |
| b | Группа параметров. Для уровневых параметров:  • 1 — уровневые параметры (PARAM_GROUP_LEVEL);  • 2 — произвольные параметры (PARAM_GROUP_GENERIC) из ParamGroup.                                                                                                                  |
| c | Номер параметра для записи из группы «Уровневые параметры» (Levelld) или «Произвольные параметры» (GenericParamsld). Параметр должен быть допустимым для контроллера.                                                                                                            |
| d | Период усреднения в секундах, 0 <= <b>d</b> <= 65535.                                                                                                                                                                                                                            |
| e | Условие адаптивной записи. Формируется в виде битового поля из значений AdaptiveLevelEventFlags_doc, в НЕХ, без 0х. Для установки двух или более условий параметр вычисляется как сумма значений этих условий в НЕХ.                                                             |
| f | Нижний порог, в единицах измерения параметра, с десятичной точкой. Допустимый диапазон соответствует диапазону числа с плавающей точкой одинарной точности, описываемого стандартом IEEE 745.                                                                                    |
| g | Ширина гистерезиса нижнего порога, в единицах измерения параметра, с десятичной точкой, <b>g</b> >= 0. Верхняя граница допустимого диапазона соответствует верхней границе допустимого диапазона числа с плавающей точкой одинарной точности, описываемого стандартом IEEE 745.  |
| h | Верхний порог, в единицах измерения параметра, с десятичной точкой. Допустимый диапазон соответствует диапазону числа с плавающей точкой одинарной точности, описываемого стандартом IEEE 745.                                                                                   |
| i | Ширина гистерезиса верхнего порога, в единицах измерения параметра, с десятичной точкой, <b>i</b> >= 0. Верхняя граница допустимого диапазона соответствует верхней границе допустимого диапазона числа с плавающей точкой одинарной точности, описываемого стандартом IEEE 745. |
| j | Порог адаптива, в единицах измерения параметра, с десятичной точкой, $j >= 0$ . Верхняя граница допустимого диапазона соответствует верхней границе допустимого диапазона числа с плавающей точкой одинарной точности, описываемого стандартом IEEE 745.                         |

**Примечание.** Зоны гистерезиса располагаются внутри диапазона **[f:h]**. Зоны гистерезиса не должны пересекаться и иметь общую границу.

**Примечание.** Если параметром **е** одновременно включено отслеживание обеих границ, то корректность их взаимного расположения контролируется: если значения границ и зон гистерезиса недопустимые, то настройки не сохраняются, а в ответ на команду вернется стандартный ответ с текущими значениями параметров.

**Примечание.** В случае недопустимых **x**, **a**, **b** или **c** контроллер возвращает ответ UNSUPPORTED\_PARAMETER.

Примечание. Если период усреднения равен 0, то усреднение отключено.

**Формат команды:** команда для настройки дискретного адаптива: ADAPTIVEx=a,b,c,d,e,f,g;

### Параметры:

| x | Номер адаптивной записи (132).                                                                                                                                              |
|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| a | Тип адаптивной записи: 2 — для дискретных параметров (ADAPTIVE_TYPE_DISCRETE из AdaptiveType).                                                                              |
| b | Группа параметров. Для дискретных параметров:  • 3 — дискретные параметры (PARAM_GROUP_DISCRETE);  • 2 — произвольные параметры (PARAM_GROUP_GENERIC) из ParamGroup.        |
| c | Номер параметра для записи из группы «Дискретные параметры» (DiscrParamId) или «Произвольные параметры» (GenericParamsId). Параметр должен быть допустимым для контроллера. |
| d | Условие адаптивной записи. Формируется в виде битового поля из значений AdaptiveDiscreteEventFlags_doc, в HEX, без 0х.                                                      |
| e | Событие изменения заданных битов состояния: маска отслеживаемых битов состояния, <b>e</b> = 0x00xFFFFFFF.                                                                   |
| f | Событие совпадения заданных битов состояния: требуемое значение отслеживаемых битов состояния, <b>f</b> = 0x00xFFFFFFFF.                                                    |
| g | Событие совпадения заданных битов состояния: маска отслеживаемых битов состояния, <b>g</b> = 0x00xFFFFFFF.                                                                  |

**Примечание.** В случае недопустимых **x**, **a**, **b** или **c** контроллер возвращает ответ UNSUPPORTED\_PARAMETER.

### Формат команды: команда для отключения адаптива:

ADAPTIVEx=a;

### Параметры:

| х | Номер адаптива (132).                               |
|---|-----------------------------------------------------|
| a | Тип адаптива: 0 — ADAPTIVE_TYPE_NO из AdaptiveType. |

**Примечание.** В случае недопустимых **х** или **а**, выходящих за диапазон допустимых значений <u>AdaptiveType</u>, контроллер возвращает ответ UNSUPPORTED\_PARAMETER. В случае, если **а** не равен ADAPTIVE\_TYPE\_NO, но входит в AdaptiveType, контроллер возвращает WRONG FORMAT.

**Формат команды:** команда для запроса параметров адаптива: GADAPTIVEx;

Ответ на запрос текущих параметров адаптива возвращается в формате, соответствующем текущему типу адаптива.

**Примечание.** В случае недопустимого **х** контроллер возвращает ответ UNSUPPORTED\_PARAMETER.

### Пример команды:

ADAPTIVE1=1,1,1,5,8,100,50,4000,50,100;

### Пример ответа:

ADAPTIVE1=1,1,1,5,8,100.0,50.0,4000.0,50.0,100.0;

Внимание! Для вступления в силу изменений необходим перезапуск контроллера после обработки команды.

#### **ADAPTIVECONTROL**

Контроль состояния адаптивного параметра.

- Доступна через сервер и SMS.
- Версия прошивки: AGXX-01.09 и выше.
- Команда запроса: GADAPTIVECONTROL. И <u>ADAPTIVECONTROL</u>, и GADAPTIVECONTROL работают одинаково на запрос.

Примечание. Для разных типов адаптива ответ выдается в разном формате.

### Формат запроса:

GADAPTIVECONTROLx;

#### Формат ответа:

ADAPTIVECONTROLx=a,b,c,d;

### Параметры:

| х | Номер адаптивной записи (132).                                                                                                                                                                                                                                                                                                                                                                                |
|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| a | Тип адаптивной записи (см. AdaptiveType).                                                                                                                                                                                                                                                                                                                                                                     |
| b | Наличие новых данных с момента предыдущего запроса:  • 0 — нет новых данных;  • 1 — новые данные.                                                                                                                                                                                                                                                                                                             |
| c | Состояние параметра. Формируется в виде битового поля, в HEX, без 0х. Возможные значения зависят от параметра а:  • <b>a</b> = ADAPTIVE_TYPE_LEVEL: значения из AdaptiveLevelEventFlags_doc;  • <b>a</b> = ADAPTIVE_TYPE_DISCRETE: значения из AdaptiveDiscreteEventFlags_doc;  • <b>a</b> = ADAPTIVE_TYPE_NO или <b>a</b> принимает недопустимое значение: адаптивная запись отключена, <b>c</b> = 00000000. |
| d | <ul> <li>Текущее значение параметра. Формат зависит от параметра a:</li> <li>a = ADAPTIVE_TYPE_LEVEL: число с десятичной точкой;</li> <li>a = ADAPTIVE_TYPE_DISCRETE: число в HEX, без 0х;</li> <li>a = ADAPTIVE_TYPE_NO или a принимает недопустимое значение: адаптивная запись отключена, d = 0.</li> </ul>                                                                                                |

**Примечание.** В случае недопустимого **х** контроллер возвращает ответ UNSUPPORTED\_PARAMETER.

#### Пример команды:

GADAPTIVECONTROL32;

### Пример ответа:

ADAPTIVECONTROL32=0,0,00000000,0; ADAPTIVECONTROL32=1,1,00000006,8.501539; ADAPTIVECONTROL32=2,1,00000001,1;

### **GLEVELVALUE**

Запрос значения уровня.

# Формат запроса:

GLEVELVALUEx=r;

### Формат ответа:

LEVELVALUEx=y,z:name;

### Параметры:

| х    | Номер параметра из Levelld.                                                                       |  |
|------|---------------------------------------------------------------------------------------------------|--|
| r    | Запросить имя параметра (опционально, 1 — запросить имя, 0 — не запрашивать).                     |  |
| у    | Наличие новых данных с момента предыдущего запроса:  • 0 — нет новых данных;  • 1 — новые данные. |  |
| z    | Значение параметра, float.                                                                        |  |
| name | Имя параметра, строка (по запросу).                                                               |  |

**Примечание.** При передаче недопустимого **х** контроллер возвращает ответ UNSUPPORTED\_PARAMETER.

## Примеры команды:

GLEVELVALUE20;

GLEVELVALUE20=1;

# Примеры ответа:

LEVELVALUE20=1,12.610;

LEVELVALUE20=1,12.688:LEVEL\_EXT\_VDD;

## **GENERICVALUE**

Запрос значения произвольного параметра.

## Формат запроса:

GGENERICVALUEx;

### Формат ответа:

GENERICVALUEx=y,z,v;

## Параметры:

| х | Номер параметра из GenericParamsId.                                                                                                                                                                                                                                                                                                                                                                                     |  |
|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| у | <ul> <li>Наличие новых данных с момента предыдущего запроса:</li> <li>0 — нет новых данных;</li> <li>1 — новые данные.</li> </ul>                                                                                                                                                                                                                                                                                       |  |
| z | Код типа значения, в HEX, без 0x (см. GenericParamType).                                                                                                                                                                                                                                                                                                                                                                |  |
| v | <ul> <li>Значение, формат в зависимости от z:</li> <li>z = GENERIC_PARAM_UINT — uint в dec;</li> <li>z = GENERIC_PARAM_INT — int в dec;</li> <li>z = GENERIC_PARAM_FLOAT — float в экспоненциальной форме, 4 цифры после запятой;</li> <li>z = GENERIC_PARAM_BITFIELD — uint, в HEX, без 0х.</li> <li>Если данных нет, то в поле val выводится 0, а в поле typeAct выводится код GENERIC_PARAM_INVALID_TYPE.</li> </ul> |  |

**Примечание.** В случае недопустимого **х** контроллер возвращает ответ UNSUPPORTED\_PARAMETER.

### **GLONGVALUE**

Запрос значения длинного параметра.

### Формат запроса:

GLONGVALUEx=r;

### Формат ответа:

LONGVALUEx=y,z:name;

### Параметры:

| х    | Номер параметра из LongParamId.                                                                                                   |  |
|------|-----------------------------------------------------------------------------------------------------------------------------------|--|
| r    | Запросить имя параметра (опционально, 1 — запросить имя, 0 — не запрашивать).                                                     |  |
| у    | <ul> <li>Наличие новых данных с момента предыдущего запроса:</li> <li>0 — нет новых данных;</li> <li>1 — новые данные.</li> </ul> |  |
| z    | Значение параметра, double.                                                                                                       |  |
| name | Имя параметра, строка (по запросу).                                                                                               |  |

**Примечание.** В случае недопустимого **х** контроллер возвращает ответ UNSUPPORTED\_PARAMETER.

## Примеры команды:

GLONGVALUE4;

GLONGVALUE4=1;

# Примеры ответа:

LONGVALUE4=0,0.000;

LONGVALUE4=0,0.000:TOTAL\_VEHICLE\_DISTANCE\_SPN\_917;

### **GDISCRVALUE**

Запрос значения дискретного параметра.

## Формат запроса:

GDISCRVALUEx=r;

### Формат ответа:

DISCRVALUEx=y,z:name;

## Параметры:

| х    | Номер параметра из DiscrParamld.                                                                                    |  |
|------|---------------------------------------------------------------------------------------------------------------------|--|
| r    | <ul> <li>Запросить имя параметра (опционально):</li> <li>1 — запросить имя;</li> <li>0 — не запрашивать.</li> </ul> |  |
| у    | Наличие новых данных с момента предыдущего запроса:  • 0 — нет новых данных;  • 1 — новые данные.                   |  |
| z    | Значение параметра, uint32_t.                                                                                       |  |
| name | Имя параметра, строка (по запросу).                                                                                 |  |

**Примечание.** В случае недопустимого **х** контроллер возвращает ответ UNSUPPORTED\_PARAMETER.

## Примеры команды:

GDISCRVALUE145;

GDISCRVALUE145=1;

## Примеры ответа:

DISCRVALUE145=1,0;

DISCRVALUE145=1,0:EDDP\_ANY\_EVENT;

# ParamGroup

Группы параметров.

| PARAM_GROUP_NO = 0   | 0 — не используется.        |
|----------------------|-----------------------------|
| PARAM_GROUP_LEVEL    | 1 — уровневые параметры.    |
| PARAM_GROUP_GENERIC  | 2 — произвольные параметры. |
| PARAM_GROUP_DISCRETE | 3 — дискретные параметры.   |

# AdaptiveType

Типы параметров.

| ADAPTIVE_TYPE_NO = 0   | 0 — адаптив отключен.                  |
|------------------------|----------------------------------------|
| ADAPTIVE_TYPE_LEVEL    | 1 — адаптив для уровневого параметра.  |
| ADAPTIVE_TYPE_DISCRETE | 2 — адаптив для дискретного параметра. |

# Levelld

Уровневые параметры.

| LEVEL_INVALID_PARAM = 0  | 0 — не используется.                                        |
|--------------------------|-------------------------------------------------------------|
| LEVEL_LLS1               | 1 — уровень топлива с датчика 1, единицы измерения датчика. |
| LEVEL_LLS2               | 2 — уровень топлива с датчика 2, единицы измерения датчика. |
| LEVEL_LLS3               | 3 — уровень топлива с датчика 3, единицы измерения датчика. |
| LEVEL_LLS4               | 4 — уровень топлива с датчика 4, единицы измерения датчика. |
| LEVEL_LLS5               | 5 — уровень топлива с датчика 5, единицы измерения датчика. |
| LEVEL_LLS6               | 6 — уровень топлива с датчика 6, единицы измерения датчика. |
| LEVEL_LLS7               | 7 — уровень топлива с датчика 7, единицы измерения датчика. |
| LEVEL_LLS8               | 8 — уровень топлива с датчика 8, единицы измерения датчика. |
| LEVEL_TEMP1              | 9 — температура с датчика 1, °C.                            |
| LEVEL_TEMP2              | 10 — температура с датчика 2,°C.                            |
| LEVEL_TEMP3              | 11 — температура с датчика 3, °C.                           |
| LEVEL_TEMP4              | 12 — температура с датчика 4, °C.                           |
| LEVEL_TEMP5              | 13 — температура с датчика 5, °C.                           |
| LEVEL_TEMP6              | 14 — температура с датчика 6, °C.                           |
| LEVEL_TEMP7              | 15 — температура с датчика 7, °C.                           |
| LEVEL_TEMP8              | 16 — температура с датчика 8, °C.                           |
| LEVEL_INT_CPU_TEMPSENSOR | 17 — температура МК, °C.                                    |
| LEVEL_VREFINT            | 18 — напряжение внутренней опоры, В.                        |
| LEVEL_GNS_ANT_VDD        | 19 — напряжение антенны, В. Статический адаптив.            |
| LEVEL_EXT_VDD            | 20 — напряжение внешнего питания, В.                        |
| LEVEL_A_IN_1             | 21 — напряжение аналогового входа 1, В.                     |
| LEVEL_A_IN_2             | 22 — напряжение аналогового входа 2, В.                     |
| LEVEL_A_EXT_BATTERY      | 23 — напряжение внешнего аккумулятора, В.                   |
| LEVEL_A_INT_BATTERY      | 24 — напряжение внутреннего аккумулятора, В.                |
| VEHICLE_SPEED_SPN_84     | 25 — скорость, км/ч.                                        |
| ACCEL_PEDAL_SPN_91       | 26 — педаль акселератора, %.                                |
| FUEL_LEVEL_1_SPN_96      | 27 — уровень топлива 1, %.                                  |
| FUEL_LEVEL_2_SPN_96      | 28 — уровень топлива 2, %.                                  |
| FUEL_LEVEL_3_SPN_96      | 29 — уровень топлива 3, %.                                  |
| FUEL_LEVEL_4_SPN_96      | 30 — уровень топлива 4, %.                                  |
| FUEL_LEVEL_5_SPN_96      | 31 — уровень топлива 5, %.                                  |
| FUEL_LEVEL_6_SPN_96      | 32 — уровень топлива 6, %.                                  |

| ADBLUE_LEVEL_SPN_1761             | 33 — уровень AdBlue, %.                    |
|-----------------------------------|--------------------------------------------|
| <br>RPM_SPN_190                   | 34 — обороты, об/бит.                      |
| OIL_PRESSURE_SPN_100              | 35 — давление масла, кПа.                  |
| OIL_TEMP_SPN_175                  | 36 — температура масла, °C.                |
| COOLANT_TEMP_SPN_110              | 37 — температура охлаждающей жидкости, °C. |
| FUEL_TEMP_SPN_174                 | 38 — температура топлива, °C.              |
| AMBIENT_AIR_TEMP_SPN_171          | 39 — внешняя температура, °C.              |
| CHARGER_AIR_TEMP_SPN_105          | 40 — температура в коллекторе наддува, °С. |
| ENGINE_AIR_INLET_PRES_SPN_106     | 41 — давление воздуха на впуске, кПа.      |
| ENGINE_CHARGER_BOOST_PRES_SPN_102 | 42 — избыточное давление наддува, кПа.     |
| LEVEL_WHEEL_LOAD_1_1              | 43 — нагрузка на колесо 1 оси 1, кг.       |
| LEVEL_WHEEL_LOAD_1_2              | 44 — нагрузка на колесо 2 оси 1, кг.       |
| LEVEL_WHEEL_LOAD_1_3              | 45 — нагрузка на колесо 3 оси 1, кг.       |
| LEVEL_WHEEL_LOAD_1_4              | 46 — нагрузка на колесо 4 оси 1, кг.       |
| LEVEL_WHEEL_LOAD_1_5              | 47 — нагрузка на колесо 5 оси 1, кг.       |
| LEVEL_WHEEL_LOAD_1_6              | 48 — нагрузка на колесо 6 оси 1, кг.       |
| LEVEL_WHEEL_LOAD_2_1              | 49 — нагрузка на колесо 1 оси 2, кг.       |
| LEVEL_WHEEL_LOAD_2_2              | 50 — нагрузка на колесо 2 оси 2, кг.       |
| LEVEL_WHEEL_LOAD_2_3              | 51 — нагрузка на колесо 3 оси 2, кг.       |
| LEVEL_WHEEL_LOAD_2_4              | 52 — нагрузка на колесо 4 оси 2, кг.       |
| LEVEL_WHEEL_LOAD_2_5              | 53 — нагрузка на колесо 5 оси 2, кг.       |
| LEVEL_WHEEL_LOAD_2_6              | 54 — нагрузка на колесо 6 оси 2, кг.       |
| LEVEL_WHEEL_LOAD_3_1              | 55 — нагрузка на колесо 1 оси 3, кг.       |
| LEVEL_WHEEL_LOAD_3_2              | 56 — нагрузка на колесо 2 оси 3, кг.       |
| LEVEL_WHEEL_LOAD_3_3              | 57 — нагрузка на колесо 3 оси 3, кг.       |
| LEVEL_WHEEL_LOAD_3_4              | 58 — нагрузка на колесо 4 оси 3, кг.       |
| LEVEL_WHEEL_LOAD_3_5              | 59 — нагрузка на колесо 5 оси 3, кг.       |
| LEVEL_WHEEL_LOAD_3_6              | 60 — нагрузка на колесо 6 оси 3, кг.       |
| LEVEL_WHEEL_LOAD_4_1              | 61 — нагрузка на колесо 1 оси 4, кг.       |
| LEVEL_WHEEL_LOAD_4_2              | 62 — нагрузка на колесо 2 оси 4, кг.       |
| LEVEL_WHEEL_LOAD_4_3              | 63 — нагрузка на колесо 3 оси 4, кг.       |
| LEVEL_WHEEL_LOAD_4_4              | 64 — нагрузка на колесо 4 оси 4, кг.       |
| LEVEL_WHEEL_LOAD_4_5              | 65 — нагрузка на колесо 5 оси 4, кг.       |
| LEVEL_WHEEL_LOAD_4_6              | 66 — нагрузка на колесо 6 оси 4, кг.       |
| LEVEL_WHEEL_LOAD_5_1              | 67 — нагрузка на колесо 1 оси 5, кг.       |
| LEVEL_WHEEL_LOAD_5_2              | 68 — нагрузка на колесо 2 оси 5, кг.       |

| LEVEL_WHEEL_LOAD_5_3       69 — нагрузка на колесо 3 оси 5, кг.         LEVEL_WHEEL_LOAD_5_4       70 — нагрузка на колесо 4 оси 5, кг.         LEVEL_WHEEL_LOAD_5_5       71 — нагрузка на колесо 5 оси 5, кг.         LEVEL_WHEEL_LOAD_5_6       72 — нагрузка на колесо 6 оси 5, кг.         LEVEL_WHEEL_LOAD_6_1       73 — нагрузка на колесо 1 оси 6, кг. |             |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| LEVEL_WHEEL_LOAD_5_5       71 — нагрузка на колесо 5 оси 5, кг.         LEVEL_WHEEL_LOAD_5_6       72 — нагрузка на колесо 6 оси 5, кг.         LEVEL_WHEEL_LOAD_6_1       73 — нагрузка на колесо 1 оси 6, кг.                                                                                                                                                 |             |
| LEVEL_WHEEL_LOAD_5_6       72 — нагрузка на колесо 6 оси 5, кг.         LEVEL_WHEEL_LOAD_6_1       73 — нагрузка на колесо 1 оси 6, кг.                                                                                                                                                                                                                         |             |
| <b>LEVEL_WHEEL_LOAD_6_1</b> 73 — нагрузка на колесо 1 оси 6, кг.                                                                                                                                                                                                                                                                                                |             |
|                                                                                                                                                                                                                                                                                                                                                                 |             |
| 11 EVEL WILLEL LOAD ( )                                                                                                                                                                                                                                                                                                                                         |             |
| LEVEL_WHEEL_LOAD_6_2       74 — нагрузка на колесо 2 оси 6, кг.                                                                                                                                                                                                                                                                                                 |             |
| <b>LEVEL_WHEEL_LOAD_6_3</b> 75 — нагрузка на колесо 3 оси 6, кг.                                                                                                                                                                                                                                                                                                |             |
| <b>LEVEL_WHEEL_LOAD_6_4</b> 76 — нагрузка на колесо 4 оси 6, кг.                                                                                                                                                                                                                                                                                                |             |
| <b>LEVEL_WHEEL_LOAD_6_5</b> 77 — нагрузка на колесо 5 оси 6, кг.                                                                                                                                                                                                                                                                                                |             |
| <b>LEVEL_WHEEL_LOAD_6_6</b> 78 — нагрузка на колесо 6 оси 6, кг.                                                                                                                                                                                                                                                                                                |             |
| LEVEL_WHEEL_LOAD_7_1         79 — нагрузка на колесо 1 оси 7, кг.                                                                                                                                                                                                                                                                                               |             |
| <b>LEVEL_WHEEL_LOAD_7_2</b> 80 — нагрузка на колесо 2 оси 7, кг.                                                                                                                                                                                                                                                                                                |             |
| <b>LEVEL_WHEEL_LOAD_7_3</b> 81 — нагрузка на колесо 3 оси 7, кг.                                                                                                                                                                                                                                                                                                |             |
| <b>LEVEL_WHEEL_LOAD_7_4</b> 82 — нагрузка на колесо 4 оси 7, кг.                                                                                                                                                                                                                                                                                                |             |
| <b>LEVEL_WHEEL_LOAD_7_5</b> 83 — нагрузка на колесо 5 оси 7, кг.                                                                                                                                                                                                                                                                                                |             |
| <b>LEVEL_WHEEL_LOAD_7_6</b> 84 — нагрузка на колесо 6 оси 7, кг.                                                                                                                                                                                                                                                                                                |             |
| LEVEL_WHEEL_LOAD_8_1       85 — нагрузка на колесо 1 оси 8, кг.                                                                                                                                                                                                                                                                                                 |             |
| LEVEL_WHEEL_LOAD_8_2       86 — нагрузка на колесо 2 оси 8, кг.                                                                                                                                                                                                                                                                                                 |             |
| <b>LEVEL_WHEEL_LOAD_8_3</b> 87 — нагрузка на колесо 3 оси 8, кг.                                                                                                                                                                                                                                                                                                |             |
| LEVEL_WHEEL_LOAD_8_4         88 — нагрузка на колесо 4 оси 8, кг.                                                                                                                                                                                                                                                                                               |             |
| <b>LEVEL_WHEEL_LOAD_8_5</b> 89 — нагрузка на колесо 5 оси 8, кг.                                                                                                                                                                                                                                                                                                |             |
| <b>LEVEL_WHEEL_LOAD_8_6</b> 90 — нагрузка на колесо 6 оси 8, кг.                                                                                                                                                                                                                                                                                                |             |
| LEVEL_WHEEL_LOAD_9_1         91 — нагрузка на колесо 1 оси 9, кг.                                                                                                                                                                                                                                                                                               |             |
| LEVEL_WHEEL_LOAD_9_2         92 — нагрузка на колесо 2 оси 9, кг.                                                                                                                                                                                                                                                                                               |             |
| <b>LEVEL_WHEEL_LOAD_9_3</b> 93 — нагрузка на колесо 3 оси 9, кг.                                                                                                                                                                                                                                                                                                |             |
| <b>LEVEL_WHEEL_LOAD_9_4</b> 94 — нагрузка на колесо 4 оси 9, кг.                                                                                                                                                                                                                                                                                                |             |
| <b>LEVEL_WHEEL_LOAD_9_5</b> 95 — нагрузка на колесо 5 оси 9, кг.                                                                                                                                                                                                                                                                                                |             |
| <b>LEVEL_WHEEL_LOAD_9_6</b> 96 — нагрузка на колесо 6 оси 9, кг.                                                                                                                                                                                                                                                                                                |             |
| LEVEL_WHEEL_LOAD_10_1       97 — нагрузка на колесо 1 оси 10, кг                                                                                                                                                                                                                                                                                                |             |
| <b>LEVEL_WHEEL_LOAD_10_2</b> 98 — нагрузка на колесо 2 оси 10, кг                                                                                                                                                                                                                                                                                               |             |
| <b>LEVEL_WHEEL_LOAD_10_3</b> 99 — нагрузка на колесо 3 оси 10, кг                                                                                                                                                                                                                                                                                               |             |
| LEVEL_WHEEL_LOAD_10_4 100 — нагрузка на колесо 4 оси 10, к                                                                                                                                                                                                                                                                                                      | КГ.         |
| LEVEL_WHEEL_LOAD_10_5         101 — нагрузка на колесо 5 оси 10, к                                                                                                                                                                                                                                                                                              | КГ.         |
| LEVEL_WHEEL_LOAD_10_6 102 — нагрузка на колесо 6 оси 10, к                                                                                                                                                                                                                                                                                                      | кг.         |
| LEVEL_WHEEL_LOAD_11_1       103 — нагрузка на колесо 1 оси 11, к                                                                                                                                                                                                                                                                                                | <b>Υ</b> Γ. |
| LEVEL_WHEEL_LOAD_11_2       104 — нагрузка на колесо 2 оси 11, к                                                                                                                                                                                                                                                                                                | <b>Υ</b> Γ. |

| LEVEL_WHEEL_LOAD_11_3      | 105 — нагрузка на колесо 3 оси 11, кг.       |
|----------------------------|----------------------------------------------|
| LEVEL_WHEEL_LOAD_11_4      | 106 — нагрузка на колесо 4 оси 11, кг.       |
| LEVEL_WHEEL_LOAD_11_5      | 107 — нагрузка на колесо 5 оси 11, кг.       |
| LEVEL_WHEEL_LOAD_11_6      | 108 — нагрузка на колесо 6 оси 11, кг.       |
| LEVEL_WHEEL_LOAD_12_1      | 109 — нагрузка на колесо 1 оси 12, кг.       |
| LEVEL_WHEEL_LOAD_12_2      | 110 — нагрузка на колесо 2 оси 12, кг.       |
| LEVEL_WHEEL_LOAD_12_3      | 111 — нагрузка на колесо 3 оси 12, кг.       |
| LEVEL_WHEEL_LOAD_12_4      | 112 — нагрузка на колесо 4 оси 12, кг.       |
| LEVEL_WHEEL_LOAD_12_5      | 113 — нагрузка на колесо 5 оси 12, кг.       |
| LEVEL_WHEEL_LOAD_12_6      | 114 — нагрузка на колесо 6 оси 12, кг.       |
| LEVEL_WHEEL_LOAD_13_1      | 115 — нагрузка на колесо 1 оси 13, кг.       |
| LEVEL_WHEEL_LOAD_13_2      | 116 — нагрузка на колесо 2 оси 13, кг.       |
| LEVEL_WHEEL_LOAD_13_3      | 117 — нагрузка на колесо 3 оси 13, кг.       |
| LEVEL_WHEEL_LOAD_13_4      | 118 — нагрузка на колесо 4 оси 13, кг.       |
| LEVEL_WHEEL_LOAD_13_5      | 119 — нагрузка на колесо 5 оси 13, кг.       |
| LEVEL_WHEEL_LOAD_13_6      | 120 — нагрузка на колесо 6 оси 13, кг.       |
| LEVEL_WHEEL_LOAD_14_1      | 121 — нагрузка на колесо 1 оси 14, кг.       |
| LEVEL_WHEEL_LOAD_14_2      | 122 — нагрузка на колесо 2 оси 14, кг.       |
| LEVEL_WHEEL_LOAD_14_3      | 123 — нагрузка на колесо 3 оси 14, кг.       |
| LEVEL_WHEEL_LOAD_14_4      | 124 — нагрузка на колесо 4 оси 14, кг.       |
| LEVEL_WHEEL_LOAD_14_5      | 125 — нагрузка на колесо 5 оси 14, кг.       |
| LEVEL_WHEEL_LOAD_14_6      | 126 — нагрузка на колесо 6 оси 14, кг.       |
| LEVEL_WHEEL_LOAD_15_1      | 127 — нагрузка на колесо 1 оси 15, кг.       |
| LEVEL_WHEEL_LOAD_15_2      | 128 — нагрузка на колесо 2 оси 15, кг.       |
| LEVEL_WHEEL_LOAD_15_3      | 129 — нагрузка на колесо 3 оси 15, кг.       |
| LEVEL_WHEEL_LOAD_15_4      | 130 — нагрузка на колесо 4 оси 15, кг.       |
| LEVEL_WHEEL_LOAD_15_5      | 131 — нагрузка на колесо 5 оси 15, кг.       |
| LEVEL_WHEEL_LOAD_15_6      | 132 — нагрузка на колесо 6 оси 15, кг.       |
| LEVEL_WHEEL_LOAD_16_1      | 133 — нагрузка на колесо 1 оси 16, кг.       |
| LEVEL_WHEEL_LOAD_16_2      | 134 — нагрузка на колесо 2 оси 16, кг.       |
| LEVEL_WHEEL_LOAD_16_3      | 135 — нагрузка на колесо 3 оси 16, кг.       |
| LEVEL_WHEEL_LOAD_16_4      | 136 — нагрузка на колесо 4 оси 16, кг.       |
| LEVEL_WHEEL_LOAD_16_5      | 137 — нагрузка на колесо 5 оси 16, кг.       |
| LEVEL_WHEEL_LOAD_16_6      | 138 — нагрузка на колесо 6 оси 16, кг.       |
| ENGINE_FUEL_RATE_SPN_183   | 139 — расход топлива в единицу времени, л/ч. |
| ENGINE_THROTTLE_POS_SPN_51 | 140 — положение дроссельной заслонки, %.     |

| ACTUAL_ENGINE_PERCENT_TORQUE_SPN_513 | 141 — действующий момент, %.                                    |
|--------------------------------------|-----------------------------------------------------------------|
| CRUISE_CONTROL_SET_SPEED_SPN_86      | 142 — скорость круиз-контроля, км/ч.                            |
| NOMINAL_FRICT_PERCENT_TORQUE_SPN_514 | 143 — номинальное трение — % крутящего момента, %.              |
| BATTERY_VOLTAGE_SPN_158              | 144 — напряжение АКБ, В.                                        |
| BAROMETRIC_PRESSURE_SPN_108          | 145 — абсолютное атмосферное давление, кПа.                     |
| ENGINE_LOAD_SPN_92                   | 146 — нагрузка на двигатель, %.                                 |
| BATTERY_CURRENT_SPN_114              | 147 — ток АКБ, А.                                               |
| PARTICULATE_FILTER                   | 148 — сажевый фильтр, %.                                        |
| LEVEL_FREQUENCY_01                   | 149 — частота или ШИМ со входа 1.                               |
| LEVEL_FREQUENCY_02                   | 150 — частота или ШИМ со входа 2.                               |
| LEVEL_FREQUENCY_03                   | 151 — частота или ШИМ со входа 3.                               |
| LEVEL_FREQUENCY_04                   | 152 — частота или ШИМ со входа 4.                               |
| LEVEL_FREQUENCY_05                   | 153 — частота или ШИМ со входа 5.                               |
| LEVEL_FREQUENCY_06                   | 154 — частота или ШИМ со входа 6.                               |
| LEVEL_FREQUENCY_07                   | 155 — частота или ШИМ со входа 7.                               |
| LEVEL_FREQUENCY_08                   | 156 — частота или ШИМ со входа 8.                               |
| LEVEL_FREQUENCY_09                   | 157 — частота или ШИМ со входа 9.                               |
| LEVEL_FREQUENCY_RPM                  | 158 — частота или ШИМ со входа RPM.                             |
| LEVEL_LLS_1_TEMPERATURE              | 159 — температура с ДУТ 1, °С, (знаковые, 8 бит).               |
| LEVEL_LLS_2_TEMPERATURE              | 160 — температура с ДУТ 2, °C.                                  |
| LEVEL_LLS_3_TEMPERATURE              | 161 — температура с ДУТ 3, °С.                                  |
| LEVEL_LLS_4_TEMPERATURE              | 162 — температура с ДУТ 4, °С.                                  |
| LEVEL_LLS_5_TEMPERATURE              | 163 — температура с ДУТ 5, °C.                                  |
| LEVEL_LLS_6_TEMPERATURE              | 164 — температура с ДУТ 6, °С.                                  |
| LEVEL_LLS_7_TEMPERATURE              | 165 — температура с ДУТ 7, °C.                                  |
| LEVEL_LLS_8_TEMPERATURE              | 166 — температура с ДУТ 8, °С.                                  |
| LEVEL_LLS_1_ANGLE                    | 167 — угол с ДУТ 1, градусы (беззнаковые, 0180°, 8 бит).        |
| LEVEL_LLS_2_ANGLE                    | 168 — угол с ДУТ 2, градусы.                                    |
| LEVEL_LLS_3_ANGLE                    | 169 — угол с ДУТ 3, градусы.                                    |
| LEVEL_LLS_4_ANGLE                    | 170 — угол с ДУТ 4, градусы.                                    |
| LEVEL_LLS_5_ANGLE                    | 171 — угол с ДУТ 5, градусы.                                    |
| LEVEL_LLS_6_ANGLE                    | 172 — угол с ДУТ 6, градусы.                                    |
| LEVEL_LLS_7_ANGLE                    | 173 — угол с ДУТ 7, градусы.                                    |
| LEVEL_LLS_8_ANGLE                    | 174 — угол с ДУТ 8, градусы.                                    |
| LEVEL_LLS_1_PITCH                    | 175 — угол тангажа с ДУТ 1, градусы (знаковые, —90°90°, 8 бит). |
| LEVEL_LLS_2_PITCH                    | 176 — угол тангажа с ДУТ 2, градусы.                            |

| LEVEL_LLS_3_PITCH            | 177 — угол тангажа с ДУТ 3, градусы.                          |
|------------------------------|---------------------------------------------------------------|
| LEVEL_LLS_4_PITCH            | 178 — угол тангажа с ДУТ 4, градусы.                          |
| LEVEL_LLS_5_PITCH            | 179 — угол тангажа с ДУТ 5, градусы.                          |
| LEVEL_LLS_6_PITCH            | 180 — угол тангажа с ДУТ 6, градусы.                          |
| LEVEL_LLS_7_PITCH            | 181 — угол тангажа с ДУТ 7, градусы.                          |
| LEVEL_LLS_8_PITCH            | 182 — угол тангажа с ДУТ 8, градусы.                          |
| LEVEL_LLS_1_ROLL             | 183 — угол крена с ДУТ 1, градусы (знаковые, —90°90°, 8 бит). |
| LEVEL_LLS_2_ROLL             | 184 — угол крена с ДУТ 2, градусы.                            |
| LEVEL_LLS_3_ROLL             | 185 — угол крена с ДУТ 3, градусы.                            |
| LEVEL_LLS_4_ROLL             | 186 — угол крена с ДУТ 4, градусы.                            |
| LEVEL_LLS_5_ROLL             | 187 — угол крена с ДУТ 5, градусы.                            |
| LEVEL_LLS_6_ROLL             | 188 — угол крена с ДУТ 6, градусы.                            |
| LEVEL_LLS_7_ROLL             | 189 — угол крена с ДУТ 7, градусы.                            |
| LEVEL_LLS_8_ROLL             | 190 — угол крена с ДУТ 8, градусы.                            |
| LEVEL_LLS_1_FREQUENCY        | 191 — частота с ДУТ 1, Гц.                                    |
| LEVEL_LLS_2_FREQUENCY        | 192 — частота с ДУТ 2, Гц.                                    |
| LEVEL_LLS_3_FREQUENCY        | 193 — частота с ДУТ 3, Гц.                                    |
| LEVEL_LLS_4_FREQUENCY        | 194 — частота с ДУТ 4, Гц.                                    |
| LEVEL_LLS_5_FREQUENCY        | 195 — частота с ДУТ 5, Гц.                                    |
| LEVEL_LLS_6_FREQUENCY        | 196 — частота с ДУТ 6, Гц.                                    |
| LEVEL_LLS_7_FREQUENCY        | 197 — частота с ДУТ 7, Гц.                                    |
| LEVEL_LLS_8_FREQUENCY        | 198 — частота с ДУТ 8, Гц.                                    |
| LEVEL_A_IN_3                 | 199 — напряжение аналогового входа 3, В.                      |
| LEVEL_A_IN_4                 | 200 — напряжение аналогового входа 4, В.                      |
| LEVEL_COUPLER_LOAD           | 201 — нагрузка на сцепное устройство, кг.                     |
| LEVEL_CARGO_WEIGHT_SPN_181   | 202 — вес груза, кг.                                          |
| LEVEL_TRAILER_WEIGHT_SPN_180 | 203 — вес трейлера (прицепа), кг.                             |
| LEVEL_A_IN_5                 | 204 — напряжение аналогового входа 5, В.                      |
| LEVEL_A_IN_6                 | 205 — напряжение аналогового входа 6, В.                      |
| LEVEL_NAV_SPEED              | 206 — скорость с навигационного приемника, км/ч.              |
| LEVEL_LLS_1_BAT_VOLT         | 207 — напряжение батареи беспроводного ДУТ 1, В.              |
| LEVEL_LLS_2_BAT_VOLT         | 208 — напряжение батареи беспроводного ДУТ 2, В.              |
| LEVEL_LLS_3_BAT_VOLT         | 209 — напряжение батареи беспроводного ДУТ 3, В.              |
| LEVEL_LLS_4_BAT_VOLT         | 210 — напряжение батареи беспроводного ДУТ 4, В.              |
| LEVEL_LLS_5_BAT_VOLT         | 211 — напряжение батареи беспроводного ДУТ 5, В.              |
| LEVEL_LLS_6_BAT_VOLT         | 212 — напряжение батареи беспроводного ДУТ 6, В.              |
|                              |                                                               |

| LEVEL_LLS_7_BAT_VOLT | 213 — напряжение батареи беспроводного ДУТ 7, В. |
|----------------------|--------------------------------------------------|
| LEVEL_LLS_8_BAT_VOLT | 214 — напряжение батареи беспроводного ДУТ 8, В. |
| LEVEL_LLS_1_RSSI     | 215 — RSSI беспроводного ДУТ 1.                  |
| LEVEL_LLS_2_RSSI     | 216 — RSSI беспроводного ДУТ 2.                  |
| LEVEL_LLS_3_RSSI     | 217 — RSSI беспроводного ДУТ 3.                  |
| LEVEL_LLS_4_RSSI     | 218 — RSSI беспроводного ДУТ 4.                  |
| LEVEL_LLS_5_RSSI     | 219 — RSSI беспроводного ДУТ 5.                  |
| LEVEL_LLS_6_RSSI     | 220 — RSSI беспроводного ДУТ 6.                  |
| LEVEL_LLS_7_RSSI     | 221 — RSSI беспроводного ДУТ 7.                  |
| LEVEL_LLS_8_RSSI     | 222 — RSSI беспроводного ДУТ 8.                  |
| TKAM_1_ANGLE         | 223 — угол с датчика угла наклона (ТКАМ) 1.      |
| TKAM_2_ANGLE         | 224 — угол с датчика угла наклона (ТКАМ) 2.      |
| TKAM_3_ANGLE         | 225 — угол с датчика угла наклона (ТКАМ) 3.      |
| TKAM_4_ANGLE         | 226 — угол с датчика угла наклона (ТКАМ) 4.      |
| TKAM_5_ANGLE         | 227 — угол с датчика угла наклона (ТКАМ) 5.      |
| TKAM_6_ANGLE         | 228 — угол с датчика угла наклона (ТКАМ) 6.      |
| TKAM_7_ANGLE         | 229 — угол с датчика угла наклона (ТКАМ) 7.      |
| TKAM_8_ANGLE         | 230 — угол с датчика угла наклона (ТКАМ) 8.      |
| TKAM_9_ANGLE         | 231 — угол с датчика угла наклона (ТКАМ) 9.      |
| TKAM_10_ANGLE        | 232 — угол с датчика угла наклона (ТКАМ) 10.     |
| TKAM_11_ANGLE        | 233 — угол с датчика угла наклона (ТКАМ) 11.     |
| TKAM_12_ANGLE        | 234 — угол с датчика угла наклона (ТКАМ) 12.     |
| TKAM_13_ANGLE        | 235 — угол с датчика угла наклона (ТКАМ) 13.     |
| TKAM_14_ANGLE        | 236 — угол с датчика угла наклона (ТКАМ) 14.     |
| TKAM_15_ANGLE        | 237 — угол с датчика угла наклона (ТКАМ) 15.     |
| TKAM_16_ANGLE        | 238 — угол с датчика угла наклона (ТКАМ) 16.     |
| TKAM_1_ROLL          | 239 — крен с датчика угла наклона (ТКАМ) 1.      |
| TKAM_2_ROLL          | 240 — крен с датчика угла наклона (ТКАМ) 2.      |
| TKAM_3_ROLL          | 241 — крен с датчика угла наклона (ТКАМ) 3.      |
| TKAM_4_ROLL          | 242 — крен с датчика угла наклона (ТКАМ) 4.      |
| TKAM_5_ROLL          | 243 — крен с датчика угла наклона (ТКАМ) 5.      |
| TKAM_6_ROLL          | 244 — крен с датчика угла наклона (ТКАМ) 6.      |
| TKAM_7_ROLL          | 245 — крен с датчика угла наклона (ТКАМ) 7.      |
| TKAM_8_ROLL          | 246 — крен с датчика угла наклона (ТКАМ) 8.      |
| TKAM_9_ROLL          | 247 — крен с датчика угла наклона (ТКАМ) 9.      |
| TKAM_10_ROLL         | 248 — крен с датчика угла наклона (ТКАМ) 10.     |

| ТКАМ_18_ROLL         251—крен с датчика угла наклона (ТКАМ) 13.           ТКАМ_14_ROLL         252—крен с датчика угла наклона (ТКАМ) 14.           ТКАМ_15_ROLL         253—крен с датчика угла наклона (ТКАМ) 15.           ТКАМ_16_ROLL         254—крен с датчика угла наклона (ТКАМ) 16.           ТКАМ_16_ROLL         254—крен с датчика угла наклона (ТКАМ) 16.           ТКАМ_2_PITCH         255—тангаж с датчика угла наклона (ТКАМ) 2.           ТКАМ_3_PITCH         257—тангаж с датчика угла наклона (ТКАМ) 4.           ТКАМ_4_PITCH         258—тангаж с датчика угла наклона (ТКАМ) 4.           ТКАМ_5_PITCH         259—тангаж с датчика угла наклона (ТКАМ) 6.           ТКАМ_6_PITCH         260—тангаж с датчика угла наклона (ТКАМ) 6.           ТКАМ_7_PITCH         261—тангаж с датчика угла наклона (ТКАМ) 7.           ТКАМ_8_PITCH         262—тангаж с датчика угла наклона (ТКАМ) 8.           ТКАМ_9-РITCH         263—тангаж с датчика угла наклона (ТКАМ) 10.           ТКАМ_19-РITCH         264—тангаж с датчика угла наклона (ТКАМ) 10.           ТКАМ_19-РITCH         265—тангаж с датчика угла наклона (ТКАМ) 11.           ТКАМ_19-РITCH         265—тангаж с датчика угла наклона (ТКАМ) 12.           ТКАМ_19-РITCH         266—тангаж с датчика угла наклона (ТКАМ) 13.           ТКАМ_19-РITCH         266—тангаж с датчика угла наклона (ТКАМ) 14.           ТКАМ_19-РITCH         266—т                                                                                                              |                                   | •                                                             |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|---------------------------------------------------------------|
| TKAM_13_ROLL         251—крен с датчика угла наклона (TKAM) 13.           TKAM_14_ROLL         252—крен с датчика угла наклона (TKAM) 14.           TKAM_15_ROLL         253—крен с датчика угла наклона (TKAM) 15.           TKAM_16_ROLL         254—крен с датчика угла наклона (TKAM) 16.           TKAM_12_PTICH         255—тангаж с датчика угла наклона (TKAM) 16.           TKAM_2_PTICH         256—тангаж с датчика угла наклона (TKAM) 3.           TKAM_3_PTICH         257—тангаж с датчика угла наклона (TKAM) 4.           TKAM_4_PTICH         259—тангаж с датчика угла наклона (TKAM) 5.           TKAM_5_PTICH         259—тангаж с датчика угла наклона (TKAM) 6.           TKAM_5_PTICH         260—тангаж с датчика угла наклона (TKAM) 7.           TKAM_6_PTICH         261—тангаж с датчика угла наклона (TKAM) 8.           TKAM_9_PTICH         262—тангаж с датчика угла наклона (TKAM) 9.           TKAM_9_PTICH         263—тангаж с датчика угла наклона (TKAM) 10.           TKAM_9_PTICH         264—тангаж с датчика угла наклона (TKAM) 10.           TKAM_1_PTICH         265—тангаж с датчика угла наклона (TKAM) 11.           TKAM_1_PTICH         266—тангаж с датчика угла наклона (TKAM) 11.           TKAM_1_PTICH         266—тангаж с датчика угла наклона (TKAM) 13.           TKAM_1_PTICH         266—тангаж с датчика угла наклона (TKAM) 14.           TKAM_1_PTICH         269—танг                                                                                                              | TKAM_11_ROLL                      | 249 — крен с датчика угла наклона (ТКАМ) 11.                  |
| TKAM_14_ROLL         252 — крен с датчика угла наклона (TKAM) 14.           TKAM_15_ROLL         253 — крен с датчика угла наклона (TKAM) 15.           TKAM_16_ROLL         254 — крен с датчика угла наклона (TKAM) 16.           TKAM_2_PITCH         255 — тангаж с датчика угла наклона (TKAM) 1.           TKAM_2_PITCH         256 — тангаж с датчика угла наклона (TKAM) 3.           TKAM_3_PITCH         257 — тангаж с датчика угла наклона (TKAM) 4.           TKAM_4_PITCH         259 — тангаж с датчика угла наклона (TKAM) 5.           TKAM_5_PITCH         259 — тангаж с датчика угла наклона (TKAM) 6.           TKAM_5_PITCH         260 — тангаж с датчика угла наклона (TKAM) 7.           TKAM_7_PITCH         261 — тангаж с датчика угла наклона (TKAM) 8.           TKAM_8_PITCH         262 — тангаж с датчика угла наклона (TKAM) 8.           TKAM_9_PITCH         263 — тангаж с датчика угла наклона (TKAM) 10.           TKAM_10_PITCH         264 — тангаж с датчика угла наклона (TKAM) 10.           TKAM_11_PITCH         265 — тангаж с датчика угла наклона (TKAM) 11.           TKAM_11_PITCH         266 — тангаж с датчика угла наклона (TKAM) 11.           TKAM_11_PITCH         267 — тангаж с датчика угла наклона (TKAM) 13.           TKAM_11_PITCH         266 — тангаж с датчика угла наклона (TKAM) 13.           TKAM_11_PITCH         267 — тангаж с датчика угла наклона (TKAM) 13.                                                                                                            | TKAM_12_ROLL                      | 250 — крен с датчика угла наклона (ТКАМ) 12.                  |
| ТКАМ_15_ROLL         233 — Крен с датчика угла наклона (ТКАМ) 15.           ТКАМ_16_ROLL         254 — Крен с датчика угла наклона (ТКАМ) 16.           ТКАМ_1_PITCH         255 — Тангаж с датчика угла наклона (ТКАМ) 1.           ТКАМ_2_PITCH         256 — Тангаж с датчика угла наклона (ТКАМ) 2.           ТКАМ_3_PITCH         257 — Тангаж с датчика угла наклона (ТКАМ) 3.           ТКАМ_4_PITCH         258 — Тангаж с датчика угла наклона (ТКАМ) 4.           ТКАМ_5_PITCH         259 — Тангаж с датчика угла наклона (ТКАМ) 5.           ТКАМ_6_PITCH         260 — Тангаж с датчика угла наклона (ТКАМ) 6.           ТКАМ_7_PITCH         261 — Тангаж с датчика угла наклона (ТКАМ) 7.           ТКАМ_9_PITCH         262 — Тангаж с датчика угла наклона (ТКАМ) 7.           ТКАМ_9_PITCH         263 — Тангаж с датчика угла наклона (ТКАМ) 8.           ТКАМ_9_PITCH         264 — Тангаж с датчика угла наклона (ТКАМ) 10.           ТКАМ_11_PITCH         265 — Тангаж с датчика угла наклона (ТКАМ) 11.           ТКАМ_11_PITCH         266 — Тангаж с датчика угла наклона (ТКАМ) 11.           ТКАМ_12_PITCH         266 — Тангаж с датчика угла наклона (ТКАМ) 13.           ТКАМ_13_PITCH         267 — Тангаж с датчика угла наклона (ТКАМ) 14.           ТКАМ_16_PITCH         268 — Тангаж с датчика угла наклона (ТКАМ) 15.           ТКАМ_16_PITCH         269 — Тангаж с датчика угла наклона (ТКАМ) 15.                                                                                                           | TKAM_13_ROLL                      | 251 — крен с датчика угла наклона (ТКАМ) 13.                  |
| ТКАМ_16_ROLL         254 — крен с датчика угла наклона (ТКАМ) 16.           ТКАМ_1_PITCH         255 — тангаж с датчика угла наклона (ТКАМ) 1.           ТКАМ_2_PITCH         256 — тангаж с датчика угла наклона (ТКАМ) 2.           ТКАМ_3_PITCH         257 — тангаж с датчика угла наклона (ТКАМ) 3.           ТКАМ_4_PITCH         258 — тангаж с датчика угла наклона (ТКАМ) 4.           ТКАМ_4_PITCH         259 — тангаж с датчика угла наклона (ТКАМ) 5.           ТКАМ_5_PITCH         260 — тангаж с датчика угла наклона (ТКАМ) 6.           ТКАМ_6_PITCH         261 — тангаж с датчика угла наклона (ТКАМ) 7.           ТКАМ_8_PITCH         262 — тангаж с датчика угла наклона (ТКАМ) 7.           ТКАМ_9_PITCH         263 — тангаж с датчика угла наклона (ТКАМ) 8.           ТКАМ_1_PITCH         264 — тангаж с датчика угла наклона (ТКАМ) 10.           ТКАМ_11_PITCH         265 — тангаж с датчика угла наклона (ТКАМ) 11.           ТКАМ_11_PITCH         265 — тангаж с датчика угла наклона (ТКАМ) 12.           ТКАМ_11_PITCH         266 — тангаж с датчика угла наклона (ТКАМ) 13.           ТКАМ_11_PITCH         267 — тангаж с датчика угла наклона (ТКАМ) 14.           ТКАМ_11_PITCH         268 — тангаж с датчика угла наклона (ТКАМ) 14.           ТКАМ_11_PITCH         269 — тангаж с датчика угла наклона (ТКАМ) 14.           ТКАМ_11_PITCH         269 — тангаж с датчика угла наклона (ТКАМ) 15.                                                                                                        | TKAM_14_ROLL                      | 252 — крен с датчика угла наклона (ТКАМ) 14.                  |
| ТКАМ_1_PITCH         255 — тангаж с датчика угла наклона (ТКАМ) 1.           ТКАМ_2_PITCH         256 — тангаж с датчика угла наклона (ТКАМ) 2.           ТКАМ_3_PITCH         257 — тангаж с датчика угла наклона (ТКАМ) 3.           ТКАМ_4_PITCH         258 — тангаж с датчика угла наклона (ТКАМ) 4.           ТКАМ_4_PITCH         259 — тангаж с датчика угла наклона (ТКАМ) 4.           ТКАМ_5_PITCH         260 — тангаж с датчика угла наклона (ТКАМ) 5.           ТКАМ_6_PITCH         261 — тангаж с датчика угла наклона (ТКАМ) 6.           ТКАМ_9_PITCH         262 — тангаж с датчика угла наклона (ТКАМ) 7.           ТКАМ_9_PITCH         263 — тангаж с датчика угла наклона (ТКАМ) 8.           ТКАМ_9_PITCH         264 — тангаж с датчика угла наклона (ТКАМ) 10.           ТКАМ_1_PITCH         265 — тангаж с датчика угла наклона (ТКАМ) 10.           ТКАМ_1_PITCH         266 — тангаж с датчика угла наклона (ТКАМ) 11.           ТКАМ_1_PITCH         267 — тангаж с датчика угла наклона (ТКАМ) 12.           ТКАМ_1_PITCH         267 — тангаж с датчика угла наклона (ТКАМ) 14.           ТКАМ_1_PITCH         268 — тангаж с датчика угла наклона (ТКАМ) 15.           ТКАМ_1_PITCH         269 — тангаж с датчика угла наклона (ТКАМ) 15.           ТКАМ_1_PITCH         269 — тангаж с датчика угла наклона (ТКАМ) 16.           ТКАМ_1_PITCH         269 — тангаж с датчика угла наклона (ТКАМ) 16.           <                                                                                                 | TKAM_15_ROLL                      | 253 — крен с датчика угла наклона (ТКАМ) 15.                  |
| ТКАМ_2. РІТСН         256— тангаж с датчика угла наклона (ТКАМ) 2.           ТКАМ_3. РІТСН         257— тангаж с датчика угла наклона (ТКАМ) 3.           ТКАМ_4. РІТСН         258— тангаж с датчика угла наклона (ТКАМ) 4.           ТКАМ_5. РІТСН         259— тангаж с датчика угла наклона (ТКАМ) 5.           ТКАМ_6. РІТСН         260— тангаж с датчика угла наклона (ТКАМ) 6.           ТКАМ_7. РІТСН         261— тангаж с датчика угла наклона (ТКАМ) 7.           ТКАМ_8. РІТСН         262— тангаж с датчика угла наклона (ТКАМ) 8.           ТКАМ_9. РІТСН         263— тангаж с датчика угла наклона (ТКАМ) 9.           ТКАМ_10. РІТСН         264— тангаж с датчика угла наклона (ТКАМ) 10.           ТКАМ_11. РІТСН         265— тангаж с датчика угла наклона (ТКАМ) 10.           ТКАМ_12. РІТСН         266— тангаж с датчика угла наклона (ТКАМ) 11.           ТКАМ_13. РІТСН         266— тангаж с датчика угла наклона (ТКАМ) 13.           ТКАМ_14. РІТСН         266— тангаж с датчика угла наклона (ТКАМ) 14.           ТКАМ_15. РІТСН         269— тангаж с датчика угла наклона (ТКАМ) 15.           ТКАМ_16. РІТСН         269— тангаж с датчика угла наклона (ТКАМ) 16.           ВРАКЕ ДІРСН         270— тангаж с датчика угла наклона (ТКАМ) 16.           ВРАКЕ ДІРСН         270— тангаж с датчика угла наклона (ТКАМ) 16.           ВРАКЕ ДІРСН         270— тангаж с датчика угла наклона (ТКАМ) 16.                                                                                                           | TKAM_16_ROLL                      | 254 — крен с датчика угла наклона (ТКАМ) 16.                  |
| ТКАМ. 3. РІТСН         257 — тангаж датчика ула наклона (ТКАМ) 3.           ТКАМ. 4. РІТСН         258 — тангаж с датчика ула наклона (ТКАМ) 4.           ТКАМ. 5. РІТСН         259 — тангаж с датчика ула наклона (ТКАМ) 5.           ТКАМ. 6. РІТСН         260 — тангаж с датчика ула наклона (ТКАМ) 6.           ТКАМ. 7. РІТСН         261 — тангаж с датчика ула наклона (ТКАМ) 7.           ТКАМ. 9. РІТСН         262 — тангаж с датчика ула наклона (ТКАМ) 8.           ТКАМ. 9. РІТСН         263 — тангаж с датчика ула наклона (ТКАМ) 9.           ТКАМ. 10. РІТСН         264 — тангаж с датчика ула наклона (ТКАМ) 10.           ТКАМ. 12. РІТСН         265 — тангаж с датчика ула наклона (ТКАМ) 11.           ТКАМ. 13. РІТСН         266 — тангаж с датчика ула наклона (ТКАМ) 12.           ТКАМ. 14. РІТСН         267 — тангаж с датчика ула наклона (ТКАМ) 14.           ТКАМ. 15. РІТСН         269 — тангаж с датчика ула наклона (ТКАМ) 15.           ТКАМ. 16. РІТСН         269 — тангаж с датчика ула наклона (ТКАМ) 16.           ВРАКЕ ДІР РІТСН         270 — тангаж с датчика ула наклона (ТКАМ) 16.           ВРАКЕ ДІР РІТСН         270 — тангаж с датчика ула наклона (ТКАМ) 16.           ВРАКЕ ДІР РІТСН         271 — давление в вервом тормозном контуре, кПа.           ВРАКЕ ДІР РІТСН         272 — давление в вгором тормозном контуре, кПа.           ВРАКЕ ДІР РІТСН         273 — общий вес автомобиля, кг.                                                                                          | TKAM_1_PITCH                      | 255 — тангаж с датчика угла наклона (ТКАМ) 1.                 |
| ТКАМ_4_PITCH         258 — тангаж с датчика угла наклона (ТКАМ) 4.           ТКАМ_5_PITCH         259 — тангаж с датчика угла наклона (ТКАМ) 5.           ТКАМ_6_PITCH         260 — тангаж с датчика угла наклона (ТКАМ) 6.           ТКАМ_7_PITCH         261 — тангаж с датчика угла наклона (ТКАМ) 7.           ТКАМ_8_PITCH         262 — тангаж с датчика угла наклона (ТКАМ) 8.           ТКАМ_9_PITCH         263 — тангаж с датчика угла наклона (ТКАМ) 9.           ТКАМ_10_PITCH         264 — тангаж с датчика угла наклона (ТКАМ) 10.           ТКАМ_11_PITCH         265 — тангаж с датчика угла наклона (ТКАМ) 11.           ТКАМ_12_PITCH         266 — тангаж с датчика угла наклона (ТКАМ) 12.           ТКАМ_13_PITCH         267 — тангаж с датчика угла наклона (ТКАМ) 13.           ТКАМ_14_PITCH         268 — тангаж с датчика угла наклона (ТКАМ) 14.           ТКАМ_15_PITCH         269 — тангаж с датчика угла наклона (ТКАМ) 15.           ТКАМ_16_PITCH         270 — тангаж с датчика угла наклона (ТКАМ) 16.           ВВАКЕ_AIR_PRESSURE_1_SPN_1087         271 — давление в первом тормозном контуре, кПа.           ВВАКЕ_AIR_PRESSURE_2_SPN_1088         272 — давление в первом тормозном контуре, кПа.           GROSS_VEHICLE_WEIGHT_SPN_1760         273 — общий вес автомобила, кг.           LEVEL_A.IN_8         275 — напряжение аналогового входа 7, 8.           LEVEL_A.IN_8         275 — напряжение аналогового входа 7,                                                                            | TKAM_2_PITCH                      | 256 — тангаж с датчика угла наклона (ТКАМ) 2.                 |
| ТКАМ_5_PITCH         259 — тангаж с датчика угла наклона (ТКАМ) 5.           ТКАМ_6_PITCH         260 — тангаж с датчика угла наклона (ТКАМ) 6.           ТКАМ_7_PITCH         261 — тангаж с датчика угла наклона (ТКАМ) 7.           ТКАМ_8_PITCH         262 — тангаж с датчика угла наклона (ТКАМ) 8.           ТКАМ_9_PITCH         263 — тангаж с датчика угла наклона (ТКАМ) 9.           ТКАМ_10_PITCH         264 — тангаж с датчика угла наклона (ТКАМ) 10.           ТКАМ_11_PITCH         265 — тангаж с датчика угла наклона (ТКАМ) 11.           ТКАМ_12_PITCH         266 — тангаж с датчика угла наклона (ТКАМ) 12.           ТКАМ_13_PITCH         267 — тангаж с датчика угла наклона (ТКАМ) 13.           ТКАМ_14_PITCH         268 — тангаж с датчика угла наклона (ТКАМ) 14.           ТКАМ_15_PITCH         269 — тангаж с датчика угла наклона (ТКАМ) 15.           ТКАМ_16_PITCH         270 — тангаж с датчика угла наклона (ТКАМ) 16.           ВВАКЕ АІВ_PRESSURE_1_SPN_1087         271 — давление в первом тормозном контуре, кПа.           ВВАКЕ АІВ_PRESSURE_2_SPN_1088         272 — давление в первом тормозном контуре, кПа.           GROSS_VEHICLE_WEIGHT_SPN_1760         273 — общий вес автомобиля, кг.           LEVEL_A.IN_8         275 — напряжение аналогового входа 7, В.           LEVEL_A.IN_8         275 — напряжение аналогового входа 7, В.           LEVEL_A.IN_8         275 — напряжение аналогового входа 7, В. <th>TKAM_3_PITCH</th> <th>257 — тангаж с датчика угла наклона (ТКАМ) 3.</th> | TKAM_3_PITCH                      | 257 — тангаж с датчика угла наклона (ТКАМ) 3.                 |
| ТКАМ_6_PITCH         260 — тангаж с датчика угла наклона (ТКАМ) 6.           ТКАМ_7_PITCH         261 — тангаж с датчика угла наклона (ТКАМ) 8.           ТКАМ_8_PITCH         262 — тангаж с датчика угла наклона (ТКАМ) 8.           ТКАМ_9_PITCH         263 — тангаж с датчика угла наклона (ТКАМ) 9.           ТКАМ_10_PITCH         264 — тангаж с датчика угла наклона (ТКАМ) 10.           ТКАМ_11_PITCH         265 — тангаж с датчика угла наклона (ТКАМ) 11.           ТКАМ_12_PITCH         266 — тангаж с датчика угла наклона (ТКАМ) 12.           ТКАМ_13_PITCH         267 — тангаж с датчика угла наклона (ТКАМ) 13.           ТКАМ_14_PITCH         268 — тангаж с датчика угла наклона (ТКАМ) 14.           ТКАМ_15_PITCH         269 — тангаж с датчика угла наклона (ТКАМ) 15.           ТКАМ_16_PITCH         270 — тангаж с датчика угла наклона (ТКАМ) 16.           ВВАКЕ_AIR_PRESSURE_1_SPN_1087         271 — давление в первом тормозном контуре, кПа.           ВКЕ_AIR_PRESSURE_2_SPN_1088         272 — давление во втором тормозном контуре, кПа.           ВКЕ_AIR_PRESSURE_2_SPN_1088         273 — общий вес автомобиля, кг.           LEVEL_A.IN_7         274 — напряжение аналогового входа 7, В.           LEVEL_A.IN_8         275 — напряжение аналогового входа 8, В.           LEVEL_A.IN_8         275 — напряжение аналогового входа 8, В.           LEVEL_A.RAGE_PERCENT         276 — расстояние до ближайшего якоря UWB, м                                                                           | TKAM_4_PITCH                      | 258 — тангаж с датчика угла наклона (ТКАМ) 4.                 |
| TKAM_7_PITCH         261 — тангаж с датчика угла наклона (TKAM) 7.           TKAM_8_PITCH         262 — тангаж с датчика угла наклона (TKAM) 8.           TKAM_9_PITCH         263 — тангаж с датчика угла наклона (TKAM) 9.           TKAM_10_PITCH         264 — тангаж с датчика угла наклона (TKAM) 10.           TKAM_11_PITCH         265 — тангаж с датчика угла наклона (TKAM) 11.           TKAM_12_PITCH         266 — тангаж с датчика угла наклона (TKAM) 12.           TKAM_13_PITCH         267 — тангаж с датчика угла наклона (TKAM) 13.           TKAM_14_PITCH         268 — тангаж с датчика угла наклона (TKAM) 14.           TKAM_15_PITCH         269 — тангаж с датчика угла наклона (TKAM) 14.           TKAM_16_PITCH         269 — тангаж с датчика угла наклона (TKAM) 15.           TKAM_16_PITCH         270 — тангаж с датчика угла наклона (TKAM) 16.           BRAKE_AIR_PRESSURE_1_SPN_1087         271 — давление в первом тормозном контуре, кПа.           BRAKE_AIR_PRESSURE_2_SPN_1088         272 — давление в овтором тормозном контуре, кПа.           GROSS_VEHICLE_WEIGHT_SPN_1760         273 — общий вес автомобиля, кг.           LEVEL_AIN_7         274 — напряжение аналогового входа 8, 8.           LEVEL_AIN_8         275 — напряжение аналогового входа 8, 8.           LEVEL_NEAREST_UWB_ANCHOR_DISTANCE         276 — расстояние до ближайшего якоря UWB, м.           LEVEL_NEAREST_UWB_ANCHOR_DISTANCE         2                                                                           | TKAM_5_PITCH                      | 259 — тангаж с датчика угла наклона (ТКАМ) 5.                 |
| ТКАМ_8_PITCH         262 — тангаж с датчика угла наклона (ТКАМ) 8.           ТКАМ_9_PITCH         263 — тангаж с датчика угла наклона (ТКАМ) 9.           ТКАМ_10_PITCH         264 — тангаж с датчика угла наклона (ТКАМ) 10.           ТКАМ_11_PITCH         265 — тангаж с датчика угла наклона (ТКАМ) 11.           ТКАМ_12_PITCH         266 — тангаж с датчика угла наклона (ТКАМ) 12.           ТКАМ_13_PITCH         267 — тангаж с датчика угла наклона (ТКАМ) 13.           ТКАМ_14_PITCH         268 — тангаж с датчика угла наклона (ТКАМ) 14.           ТКАМ_15_PITCH         269 — тангаж с датчика угла наклона (ТКАМ) 15.           ТКАМ_16_PITCH         270 — тангаж с датчика угла наклона (ТКАМ) 16.           ВВАКЕ_AIR_PRESSURE_1_SPN_1087         271 — давление в первом тормозном контуре, кПа.           ВВАКЕ_AIR_PRESSURE_2_SPN_1088         272 — давление в первом тормозном контуре, кПа.           GROSS_VEHICLE_WEIGHT_SPN_1760         273 — общий вес автомобиля, кг.           LEVEL_A_IN_7         274 — напряжение аналогового входа 7, 8.           LEVEL_A_IN_8         275 — напряжение аналогового входа 8, 8.           LEVEL_AKB_CHARGE_PERCENT         277 — процент заряда батареи.           ТКАМ_1 , RPM         278 — частота вращения датчика угла наклона (ТКАМ) 1, об/мин.           ТКАМ_2 , RPM         280 — частота вращения датчика угла наклона (ТКАМ) 3, об/мин.           ТКАМ_4 , RPM         281 — частота в                                                                           | TKAM_6_PITCH                      | 260 — тангаж с датчика угла наклона (ТКАМ) 6.                 |
| ТКАМ_9_PITCH         263 — тангаж с датчика угла наклона (ТКАМ) 9.           ТКАМ_10_PITCH         264 — тангаж с датчика угла наклона (ТКАМ) 10.           ТКАМ_11_PITCH         265 — тангаж с датчика угла наклона (ТКАМ) 11.           ТКАМ_12_PITCH         266 — тангаж с датчика угла наклона (ТКАМ) 12.           ТКАМ_13_PITCH         267 — тангаж с датчика угла наклона (ТКАМ) 13.           ТКАМ_14_PITCH         268 — тангаж с датчика угла наклона (ТКАМ) 14.           ТКАМ_15_PITCH         269 — тангаж с датчика угла наклона (ТКАМ) 15.           ТКАМ_16_PITCH         270 — тангаж с датчика угла наклона (ТКАМ) 16.           ВВАКЕ_AIR_PRESSURE_1_SPN_1087         271 — давление в первом тормозном контуре, кПа.           ВВАКЕ_AIR_PRESSURE_2_SPN_1088         272 — давление во втором тормозном контуре, кПа.           GROSS_VEHICLE_WEIGHT_SPN_1760         273 — общий вес автомобиля, кг.           LEVEL_A.IN_7         274 — напряжение аналогового входа 7, В.           LEVEL_A.IN_8         275 — напряжение аналогового входа 8, В.           LEVEL_NEAREST_UWB_ANCHOR_DISTANCE         276 — расстояние до ближайшего якоря UWB, м.           LEVEL_AKB_CHARGE_PERCENT         277 — процент заряда батареи.           ТКАМ_1_RPM         278 — частота вращения датчика угла наклона (ТКАМ) 3, об/мин.           ТКАМ_2_RPM         280 — частота вращения датчика угла наклона (ТКАМ) 4, об/мин.           ТКАМ_4_RPM                                                                                    | TKAM_7_PITCH                      | 261 — тангаж с датчика угла наклона (ТКАМ) 7.                 |
| TKAM_10_PITCH       264 — тангаж с датчика угла наклона (ТКАМ) 10.         TKAM_11_PITCH       265 — тангаж с датчика угла наклона (ТКАМ) 11.         TKAM_12_PITCH       266 — тангаж с датчика угла наклона (ТКАМ) 12.         TKAM_13_PITCH       267 — тангаж с датчика угла наклона (ТКАМ) 13.         TKAM_14_PITCH       268 — тангаж с датчика угла наклона (ТКАМ) 14.         TKAM_15_PITCH       269 — тангаж с датчика угла наклона (ТКАМ) 15.         TKAM_16_PITCH       270 — тангаж с датчика угла наклона (ТКАМ) 16.         BRAKE_AIR_PRESSURE_1_SPN_1087       271 — давление в первом тормозном контуре, кПа.         BRAKE_AIR_PRESSURE_2_SPN_1088       272 — давление во втором тормозном контуре, кПа.         GROSS_VEHICLE_WEIGHT_SPN_1760       273 — общий вес автомобиля, кг.         LEVEL_A_IN_7       274 — напряжение аналогового входа 7, В.         LEVEL_A_IN_8       275 — напряжение аналогового входа 8, В.         LEVEL_NEAREST_UWB_ANCHOR_DISTANCE       276 — расстояние до ближайшего якоря UWB, м.         LEVEL_AKB_CHARGE_PERCENT       277 — процент заряда батареи.         TKAM_1_RPM       278 — частота вращения датчика угла наклона (ТКАМ) 1, об/мин.         TKAM_2_RPM       280 — частота вращения датчика угла наклона (ТКАМ) 4, об/мин.         TKAM_4_RPM       281 — частота вращения датчика угла наклона (ТКАМ) 5, об/мин.         TKAM_6_RPM       282 — частота вращения датчика угла наклона (ТКА                                                                                   | TKAM_8_PITCH                      | 262 — тангаж с датчика угла наклона (ТКАМ) 8.                 |
| TKAM_11_PITCH         265 — тангаж с датчика угла наклона (ТКАМ) 11.           TKAM_12_PITCH         266 — тангаж с датчика угла наклона (ТКАМ) 12.           TKAM_13_PITCH         267 — тангаж с датчика угла наклона (ТКАМ) 13.           TKAM_14_PITCH         268 — тангаж с датчика угла наклона (ТКАМ) 14.           TKAM_15_PITCH         269 — тангаж с датчика угла наклона (ТКАМ) 15.           TKAM_16_PITCH         270 — тангаж с датчика угла наклона (ТКАМ) 16.           BRAKE_AIR_PRESSURE_1_SPN_1087         271 — давление в первом тормозном контуре, кПа.           BRAKE_AIR_PRESSURE_2_SPN_1088         272 — давление во втором тормозном контуре, кПа.           GROSS_VEHICLE_WEIGHT_SPN_1760         273 — общий вес автомобиля, кг.           LEVEL_A.IN_7         274 — напряжение аналогового входа 7, В.           LEVEL_A.IN_8         275 — напряжение аналогового входа 8, В.           LEVEL_NEAREST_UWB_ANCHOR_DISTANCE         276 — расстояние до ближайшего якоря UWB, м.           LEVEL_AKB_CHARGE_PERCENT         277 — процент заряда батареи.           TKAM_1_RPM         278 — частота вращения датчика угла наклона (ТКАМ) 1, об/мин.           TKAM_2_RPM         280 — частота вращения датчика угла наклона (ТКАМ) 3, об/мин.           TKAM_4_RPM         281 — частота вращения датчика угла наклона (ТКАМ) 5, об/мин.           TKAM_6_RPM         282 — частота вращения датчика угла наклона (ТКАМ) 6, об/мин.                                                                               | TKAM_9_PITCH                      | 263 — тангаж с датчика угла наклона (ТКАМ) 9.                 |
| TKAM_12_PITCH       266 — тангаж с датчика угла наклона (TKAM) 12.         TKAM_13_PITCH       267 — тангаж с датчика угла наклона (TKAM) 13.         TKAM_14_PITCH       268 — тангаж с датчика угла наклона (TKAM) 14.         TKAM_15_PITCH       269 — тангаж с датчика угла наклона (TKAM) 15.         TKAM_16_PITCH       270 — тангаж с датчика угла наклона (TKAM) 16.         BRAKE_AIR_PRESSURE_1_SPN_1087       271 — давление в первом тормозном контуре, кПа.         BRAKE_AIR_PRESSURE_2_SPN_1088       272 — давление во втором тормозном контуре, кПа.         GROSS_VEHICLE_WEIGHT_SPN_1760       273 — общий вес автомобиля, кг.         LEVEL_A.IN_7       274 — напряжение аналогового входа 7, В.         LEVEL_A.IN_8       275 — напряжение аналогового входа 8, В.         LEVEL_NEAREST_UWB_ANCHOR_DISTANCE       276 — расстояние до ближайшего якоря UWB, м.         LEVEL_AKB_CHARGE_PERCENT       277 — процент заряда батареи.         TKAM_1_RPM       278 — частота вращения датчика угла наклона (TKAM) 1, об/мин.         TKAM_2_RPM       280 — частота вращения датчика угла наклона (TKAM) 3, об/мин.         TKAM_3_RPM       280 — частота вращения датчика угла наклона (TKAM) 4, об/мин.         TKAM_6_RPM       281 — частота вращения датчика угла наклона (TKAM) 6, об/мин.         TKAM_6_RPM       282 — частота вращения датчика угла наклона (TKAM) 6, об/мин.                                                                                                                                     | TKAM_10_PITCH                     | 264 — тангаж с датчика угла наклона (ТКАМ) 10.                |
| TKAM_13_PITCH       267 — тангаж с датчика угла наклона (TKAM) 13.         TKAM_14_PITCH       268 — тангаж с датчика угла наклона (TKAM) 14.         TKAM_15_PITCH       269 — тангаж с датчика угла наклона (TKAM) 15.         TKAM_16_PITCH       270 — тангаж с датчика угла наклона (TKAM) 16.         BRAKE_AIR_PRESSURE_1_SPN_1087       271 — давление в первом тормозном контуре, кПа.         BRAKE_AIR_PRESSURE_2_SPN_1088       272 — давление во втором тормозном контуре, кПа.         GROSS_VEHICLE_WEIGHT_SPN_1760       273 — общий вес автомобиля, кг.         LEVEL_A_IN_7       274 — напряжение аналогового входа 7, В.         LEVEL_A_IN_8       275 — напряжение аналогового входа 8, В.         LEVEL_NEAREST_UWB_ANCHOR_DISTANCE       276 — расстояние до ближайшего якоря UWB, м.         LEVEL_AKB_CHARGE_PERCENT       277 — процент заряда батареи.         TKAM_1_RPM       278 — частота вращения датчика угла наклона (TKAM) 1, об/мин.         TKAM_2_RPM       279 — частота вращения датчика угла наклона (TKAM) 2, об/мин.         TKAM_3_RPM       280 — частота вращения датчика угла наклона (TKAM) 3, об/мин.         TKAM_4_RPM       281 — частота вращения датчика угла наклона (TKAM) 5, об/мин.         TKAM_6_RPM       282 — частота вращения датчика угла наклона (TKAM) 6, об/мин.                                                                                                                                                                                                                | TKAM_11_PITCH                     | 265 — тангаж с датчика угла наклона (ТКАМ) 11.                |
| TKAM_14_PITCH       268 — тангаж с датчика угла наклона (TKAM) 14.         TKAM_15_PITCH       269 — тангаж с датчика угла наклона (TKAM) 15.         TKAM_16_PITCH       270 — тангаж с датчика угла наклона (TKAM) 16.         BRAKE_AIR_PRESSURE_1_SPN_1087       271 — давление в первом тормозном контуре, кПа.         BRAKE_AIR_PRESSURE_2_SPN_1088       272 — давление во втором тормозном контуре, кПа.         GROSS_VEHICLE_WEIGHT_SPN_1760       273 — общий вес автомобиля, кг.         LEVEL_A_IN_7       274 — напряжение аналогового входа 7, В.         LEVEL_A_IN_8       275 — напряжение аналогового входа 8, В.         LEVEL_NEAREST_UWB_ANCHOR_DISTANCE       276 — расстояние до ближайшего якоря UWB, м.         LEVEL_AKB_CHARGE_PERCENT       277 — процент заряда батареи.         TKAM_1_RPM       278 — частота вращения датчика угла наклона (TKAM) 1, об/мин.         TKAM_2_RPM       279 — частота вращения датчика угла наклона (TKAM) 2, об/мин.         TKAM_3_RPM       280 — частота вращения датчика угла наклона (TKAM) 4, об/мин.         TKAM_4_RPM       281 — частота вращения датчика угла наклона (TKAM) 5, об/мин.         TKAM_5_RPM       282 — частота вращения датчика угла наклона (TKAM) 6, об/мин.         TKAM_6_RPM       283 — частота вращения датчика угла наклона (TKAM) 6, об/мин.                                                                                                                                                                                                    | TKAM_12_PITCH                     | 266 — тангаж с датчика угла наклона (ТКАМ) 12.                |
| TKAM_15_PITCH       269 — тангаж с датчика угла наклона (ТКАМ) 15.         TKAM_16_PITCH       270 — тангаж с датчика угла наклона (ТКАМ) 16.         BRAKE_AIR_PRESSURE_1_SPN_1087       271 — давление в первом тормозном контуре, кПа.         BRAKE_AIR_PRESSURE_2_SPN_1088       272 — давление во втором тормозном контуре, кПа.         GROSS_VEHICLE_WEIGHT_SPN_1760       273 — общий вес автомобиля, кг.         LEVEL_A_IN_7       274 — напряжение аналогового входа 7, В.         LEVEL_A_IN_8       275 — напряжение аналогового входа 8, В.         LEVEL_NEAREST_UWB_ANCHOR_DISTANCE       276 — расстояние до ближайшего якоря UWB, м.         LEVEL_AKB_CHARGE_PERCENT       277 — процент заряда батареи.         TKAM_1_RPM       278 — частота вращения датчика угла наклона (ТКАМ) 1, об/мин.         TKAM_2_RPM       279 — частота вращения датчика угла наклона (ТКАМ) 3, об/мин.         TKAM_4_RPM       280 — частота вращения датчика угла наклона (ТКАМ) 4, об/мин.         TKAM_5_RPM       281 — частота вращения датчика угла наклона (ТКАМ) 5, об/мин.         TKAM_5_RPM       282 — частота вращения датчика угла наклона (ТКАМ) 5, об/мин.         TKAM_6_RPM       283 — частота вращения датчика угла наклона (ТКАМ) 6, об/мин.                                                                                                                                                                                                                                                                               | TKAM_13_PITCH                     | 267 — тангаж с датчика угла наклона (ТКАМ) 13.                |
| TKAM_16_PITCH       270 — тангаж с датчика угла наклона (ТКАМ) 16.         BRAKE_AIR_PRESSURE_1_SPN_1087       271 — давление в первом тормозном контуре, кПа.         BRAKE_AIR_PRESSURE_2_SPN_1088       272 — давление во втором тормозном контуре, кПа.         GROSS_VEHICLE_WEIGHT_SPN_1760       273 — общий вес автомобиля, кг.         LEVEL_A_IN_7       274 — напряжение аналогового входа 7, В.         LEVEL_A_IN_8       275 — напряжение аналогового входа 8, В.         LEVEL_NEAREST_UWB_ANCHOR_DISTANCE       276 — расстояние до ближайшего якоря UWB, м.         LEVEL_AKB_CHARGE_PERCENT       277 — процент заряда батареи.         TKAM_1_RPM       278 — частота вращения датчика угла наклона (ТКАМ) 1, об/мин.         TKAM_2_RPM       279 — частота вращения датчика угла наклона (ТКАМ) 3, об/мин.         TKAM_3_RPM       280 — частота вращения датчика угла наклона (ТКАМ) 4, об/мин.         TKAM_4_RPM       281 — частота вращения датчика угла наклона (ТКАМ) 5, об/мин.         TKAM_5_RPM       282 — частота вращения датчика угла наклона (ТКАМ) 5, об/мин.         TKAM_6_RPM       283 — частота вращения датчика угла наклона (ТКАМ) 6, об/мин.                                                                                                                                                                                                                                                                                                                                                          | TKAM_14_PITCH                     | 268 — тангаж с датчика угла наклона (ТКАМ) 14.                |
| BRAKE_AIR_PRESSURE_1_SPN_1087       271 — давление в первом тормозном контуре, кПа.         BRAKE_AIR_PRESSURE_2_SPN_1088       272 — давление во втором тормозном контуре, кПа.         GROSS_VEHICLE_WEIGHT_SPN_1760       273 — общий вес автомобиля, кг.         LEVEL_A_IN_7       274 — напряжение аналогового входа 7, В.         LEVEL_A_IN_8       275 — напряжение аналогового входа 8, В.         LEVEL_NEAREST_UWB_ANCHOR_DISTANCE       276 — расстояние до ближайшего якоря UWB, м.         LEVEL_AKB_CHARGE_PERCENT       277 — процент заряда батареи.         TKAM_1_RPM       278 — частота вращения датчика угла наклона (ТКАМ) 1, об/мин.         TKAM_2_RPM       279 — частота вращения датчика угла наклона (ТКАМ) 3, об/мин.         TKAM_3_RPM       280 — частота вращения датчика угла наклона (ТКАМ) 4, об/мин.         TKAM_4_RPM       281 — частота вращения датчика угла наклона (ТКАМ) 5, об/мин.         TKAM_5_RPM       282 — частота вращения датчика угла наклона (ТКАМ) 5, об/мин.         TKAM_6_RPM       283 — частота вращения датчика угла наклона (ТКАМ) 6, об/мин.                                                                                                                                                                                                                                                                                                                                                                                                                                     | TKAM_15_PITCH                     | 269 — тангаж с датчика угла наклона (ТКАМ) 15.                |
| BRAKE_AIR_PRESSURE_2_SPN_1088       272 — давление во втором тормозном контуре, кПа.         GROSS_VEHICLE_WEIGHT_SPN_1760       273 — общий вес автомобиля, кг.         LEVEL_A_IN_7       274 — напряжение аналогового входа 7, В.         LEVEL_A_IN_8       275 — напряжение аналогового входа 8, В.         LEVEL_NEAREST_UWB_ANCHOR_DISTANCE       276 — расстояние до ближайшего якоря UWB, м.         LEVEL_AKB_CHARGE_PERCENT       277 — процент заряда батареи.         TKAM_1_RPM       278 — частота вращения датчика угла наклона (ТКАМ) 1, об/мин.         TKAM_2_RPM       279 — частота вращения датчика угла наклона (ТКАМ) 2, об/мин.         TKAM_3_RPM       280 — частота вращения датчика угла наклона (ТКАМ) 4, об/мин.         TKAM_4_RPM       281 — частота вращения датчика угла наклона (ТКАМ) 4, об/мин.         TKAM_5_RPM       282 — частота вращения датчика угла наклона (ТКАМ) 5, об/мин.         TKAM_6_RPM       283 — частота вращения датчика угла наклона (ТКАМ) 6, об/мин.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | TKAM_16_PITCH                     | 270 — тангаж с датчика угла наклона (ТКАМ) 16.                |
| GROSS_VEHICLE_WEIGHT_SPN_1760       273 — общий вес автомобиля, кг.         LEVEL_A_IN_7       274 — напряжение аналогового входа 7, В.         LEVEL_A_IN_8       275 — напряжение аналогового входа 8, В.         LEVEL_NEAREST_UWB_ANCHOR_DISTANCE       276 — расстояние до ближайшего якоря UWB, м.         LEVEL_AKB_CHARGE_PERCENT       277 — процент заряда батареи.         TKAM_1_RPM       278 — частота вращения датчика угла наклона (TKAM) 1, об/мин.         TKAM_2_RPM       279 — частота вращения датчика угла наклона (TKAM) 3, об/мин.         TKAM_3_RPM       280 — частота вращения датчика угла наклона (TKAM) 3, об/мин.         TKAM_4_RPM       281 — частота вращения датчика угла наклона (TKAM) 4, об/мин.         TKAM_5_RPM       282 — частота вращения датчика угла наклона (TKAM) 5, об/мин.         TKAM_6_RPM       283 — частота вращения датчика угла наклона (TKAM) 6, об/мин.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | BRAKE_AIR_PRESSURE_1_SPN_1087     | 271 — давление в первом тормозном контуре, кПа.               |
| LEVEL_A_IN_7       274 — напряжение аналогового входа 7, В.         LEVEL_A_IN_8       275 — напряжение аналогового входа 8, В.         LEVEL_NEAREST_UWB_ANCHOR_DISTANCE       276 — расстояние до ближайшего якоря UWB, м.         LEVEL_AKB_CHARGE_PERCENT       277 — процент заряда батареи.         TKAM_1_RPM       278 — частота вращения датчика угла наклона (TKAM) 1, об/мин.         TKAM_2_RPM       279 — частота вращения датчика угла наклона (TKAM) 2, об/мин.         TKAM_3_RPM       280 — частота вращения датчика угла наклона (TKAM) 3, об/мин.         TKAM_4_RPM       281 — частота вращения датчика угла наклона (TKAM) 4, об/мин.         TKAM_5_RPM       282 — частота вращения датчика угла наклона (TKAM) 5, об/мин.         TKAM_6_RPM       283 — частота вращения датчика угла наклона (TKAM) 6, об/мин.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | BRAKE_AIR_PRESSURE_2_SPN_1088     | 272 — давление во втором тормозном контуре, кПа.              |
| LEVEL_A_IN_8       275 — напряжение аналогового входа 8, В.         LEVEL_NEAREST_UWB_ANCHOR_DISTANCE       276 — расстояние до ближайшего якоря UWB, м.         LEVEL_AKB_CHARGE_PERCENT       277 — процент заряда батареи.         TKAM_1_RPM       278 — частота вращения датчика угла наклона (TKAM) 1, об/мин.         TKAM_2_RPM       279 — частота вращения датчика угла наклона (TKAM) 2, об/мин.         TKAM_3_RPM       280 — частота вращения датчика угла наклона (TKAM) 3, об/мин.         TKAM_4_RPM       281 — частота вращения датчика угла наклона (TKAM) 4, об/мин.         TKAM_5_RPM       282 — частота вращения датчика угла наклона (TKAM) 5, об/мин.         TKAM_6_RPM       283 — частота вращения датчика угла наклона (TKAM) 6, об/мин.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | GROSS_VEHICLE_WEIGHT_SPN_1760     | 273 — общий вес автомобиля, кг.                               |
| LEVEL_NEAREST_UWB_ANCHOR_DISTANCE       276 — расстояние до ближайшего якоря UWB, м.         LEVEL_AKB_CHARGE_PERCENT       277 — процент заряда батареи.         TKAM_1_RPM       278 — частота вращения датчика угла наклона (TKAM) 1, об/мин.         TKAM_2_RPM       279 — частота вращения датчика угла наклона (TKAM) 2, об/мин.         TKAM_3_RPM       280 — частота вращения датчика угла наклона (TKAM) 3, об/мин.         TKAM_4_RPM       281 — частота вращения датчика угла наклона (TKAM) 4, об/мин.         TKAM_5_RPM       282 — частота вращения датчика угла наклона (TKAM) 5, об/мин.         TKAM_6_RPM       283 — частота вращения датчика угла наклона (TKAM) 6, об/мин.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | LEVEL_A_IN_7                      | 274 — напряжение аналогового входа 7, В.                      |
| LEVEL_AKB_CHARGE_PERCENT       277 — процент заряда батареи.         TKAM_1_RPM       278 — частота вращения датчика угла наклона (TKAM) 1, об/мин.         TKAM_2_RPM       279 — частота вращения датчика угла наклона (TKAM) 2, об/мин.         TKAM_3_RPM       280 — частота вращения датчика угла наклона (TKAM) 3, об/мин.         TKAM_4_RPM       281 — частота вращения датчика угла наклона (TKAM) 4, об/мин.         TKAM_5_RPM       282 — частота вращения датчика угла наклона (TKAM) 5, об/мин.         TKAM_6_RPM       283 — частота вращения датчика угла наклона (TKAM) 6, об/мин.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | LEVEL_A_IN_8                      | 275 — напряжение аналогового входа 8, В.                      |
| ТКАМ_1_RPM       278 — частота вращения датчика угла наклона (ТКАМ) 1, об/мин.         ТКАМ_2_RPM       279 — частота вращения датчика угла наклона (ТКАМ) 2, об/мин.         ТКАМ_3_RPM       280 — частота вращения датчика угла наклона (ТКАМ) 3, об/мин.         ТКАМ_4_RPM       281 — частота вращения датчика угла наклона (ТКАМ) 4, об/мин.         ТКАМ_5_RPM       282 — частота вращения датчика угла наклона (ТКАМ) 5, об/мин.         ТКАМ_6_RPM       283 — частота вращения датчика угла наклона (ТКАМ) 6, об/мин.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | LEVEL_NEAREST_UWB_ANCHOR_DISTANCE | 276 — расстояние до ближайшего якоря UWB, м.                  |
| ТКАМ_2_RPM       279 — частота вращения датчика угла наклона (ТКАМ) 2, об/мин.         ТКАМ_3_RPM       280 — частота вращения датчика угла наклона (ТКАМ) 3, об/мин.         ТКАМ_4_RPM       281 — частота вращения датчика угла наклона (ТКАМ) 4, об/мин.         ТКАМ_5_RPM       282 — частота вращения датчика угла наклона (ТКАМ) 5, об/мин.         ТКАМ_6_RPM       283 — частота вращения датчика угла наклона (ТКАМ) 6, об/мин.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | LEVEL_AKB_CHARGE_PERCENT          | 277 — процент заряда батареи.                                 |
| ТКАМ_3_RPM       280 — частота вращения датчика угла наклона (ТКАМ) 3, об/мин.         ТКАМ_4_RPM       281 — частота вращения датчика угла наклона (ТКАМ) 4, об/мин.         ТКАМ_5_RPM       282 — частота вращения датчика угла наклона (ТКАМ) 5, об/мин.         ТКАМ_6_RPM       283 — частота вращения датчика угла наклона (ТКАМ) 6, об/мин.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | TKAM_1_RPM                        | 278 — частота вращения датчика угла наклона (ТКАМ) 1, об/мин. |
| ТКАМ_4_RPM       281 — частота вращения датчика угла наклона (ТКАМ) 4, об/мин.         ТКАМ_5_RPM       282 — частота вращения датчика угла наклона (ТКАМ) 5, об/мин.         ТКАМ_6_RPM       283 — частота вращения датчика угла наклона (ТКАМ) 6, об/мин.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TKAM_2_RPM                        | 279 — частота вращения датчика угла наклона (ТКАМ) 2, об/мин. |
| ТКАМ_5_RPM       282 — частота вращения датчика угла наклона (ТКАМ) 5, об/мин.         ТКАМ_6_RPM       283 — частота вращения датчика угла наклона (ТКАМ) 6, об/мин.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TKAM_3_RPM                        | 280 — частота вращения датчика угла наклона (ТКАМ) 3, об/мин. |
| <b>ТКАМ_6_RPM</b> 283 — частота вращения датчика угла наклона (ТКАМ) 6, об/мин.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | TKAM_4_RPM                        | 281 — частота вращения датчика угла наклона (ТКАМ) 4, об/мин. |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | TKAM_5_RPM                        | 282 — частота вращения датчика угла наклона (ТКАМ) 5, об/мин. |
| <b>ТКАМ_7_RPM</b> 284 — частота вращения датчика угла наклона (ТКАМ) 7, об/мин.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | TKAM_6_RPM                        | 283 — частота вращения датчика угла наклона (ТКАМ) 6, об/мин. |
| Į.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | TKAM_7_RPM                        | 284 — частота вращения датчика угла наклона (ТКАМ) 7, об/мин. |

| TKAM_8_RPM  | 285 — частота вращения датчика угла наклона (ТКАМ) 8, об/мин.  |
|-------------|----------------------------------------------------------------|
| TKAM_9_RPM  | 286 — частота вращения датчика угла наклона (ТКАМ) 9, об/мин.  |
| TKAM_10_RPM | 287 — частота вращения датчика угла наклона (ТКАМ) 10, об/мин. |
| TKAM_11_RPM | 288 — частота вращения датчика угла наклона (ТКАМ) 11, об/мин. |
| TKAM_12_RPM | 289 — частота вращения датчика угла наклона (ТКАМ) 12, об/мин. |
| TKAM_13_RPM | 290 — частота вращения датчика угла наклона (ТКАМ) 13, об/мин. |
| TKAM_14_RPM | 291 — частота вращения датчика угла наклона (ТКАМ) 14, об/мин. |
| TKAM_15_RPM | 292 — частота вращения датчика угла наклона (ТКАМ) 15, об/мин. |
| TKAM_16_RPM | 293 — частота вращения датчика угла наклона (ТКАМ) 16, об/мин. |

# GenericParamsId

Идентификаторы произвольных параметров.

| GENERIC_INVALID_PARAM = 0 | O HOMEDORI SVOTEG                             |
|---------------------------|-----------------------------------------------|
|                           | 0 — не используется.                          |
| GENERIC_MODBUS_PARAM_1    | 1 — произвольный параметр датчика Modbus 1.   |
| GENERIC_MODBUS_PARAM_2    | 2 — произвольный параметр датчика Modbus 2.   |
| GENERIC_MODBUS_PARAM_3    | 3 — произвольный параметр датчика Modbus 3.   |
| GENERIC_MODBUS_PARAM_4    | 4 — произвольный параметр датчика Modbus 4.   |
| GENERIC_MODBUS_PARAM_5    | 5 — произвольный параметр датчика Modbus 5.   |
| GENERIC_MODBUS_PARAM_6    | 6 — произвольный параметр датчика Modbus 6.   |
| GENERIC_MODBUS_PARAM_7    | 7 — произвольный параметр датчика Modbus 7.   |
| GENERIC_MODBUS_PARAM_8    | 8 — произвольный параметр датчика Modbus 8.   |
| GENERIC_MODBUS_PARAM_9    | 9 — произвольный параметр датчика Modbus 9.   |
| GENERIC_MODBUS_PARAM_10   | 10 — произвольный параметр датчика Modbus 10. |
| GENERIC_MODBUS_PARAM_11   | 11 — произвольный параметр датчика Modbus 11. |
| GENERIC_MODBUS_PARAM_12   | 12 — произвольный параметр датчика Modbus 12. |
| GENERIC_MODBUS_PARAM_13   | 13 — произвольный параметр датчика Modbus 13. |
| GENERIC_MODBUS_PARAM_14   | 14 — произвольный параметр датчика Modbus 14. |
| GENERIC_MODBUS_PARAM_15   | 15 — произвольный параметр датчика Modbus 15. |
| GENERIC_MODBUS_PARAM_16   | 16 — произвольный параметр датчика Modbus 16. |
| GENERIC_MODBUS_PARAM_17   | 17 — произвольный параметр датчика Modbus 17. |
| GENERIC_MODBUS_PARAM_18   | 18 — произвольный параметр датчика Modbus 18. |
| GENERIC_MODBUS_PARAM_19   | 19— произвольный параметр датчика Modbus 19.  |
| GENERIC_MODBUS_PARAM_20   | 20 — произвольный параметр датчика Modbus 20. |
| GENERIC_MODBUS_PARAM_21   | 21 — произвольный параметр датчика Modbus 21. |
| GENERIC_MODBUS_PARAM_22   | 22 — произвольный параметр датчика Modbus 22. |
| GENERIC_MODBUS_PARAM_23   | 23 — произвольный параметр датчика Modbus 23. |
| GENERIC_MODBUS_PARAM_24   | 24 — произвольный параметр датчика Modbus 24. |
| GENERIC_MODBUS_PARAM_25   | 25 — произвольный параметр датчика Modbus 25. |
| GENERIC_MODBUS_PARAM_26   | 26 — произвольный параметр датчика Modbus 26. |
| GENERIC_MODBUS_PARAM_27   | 27 — произвольный параметр датчика Modbus 27. |
| GENERIC_MODBUS_PARAM_28   | 28 — произвольный параметр датчика Modbus 28. |
| GENERIC_MODBUS_PARAM_29   | 29 — произвольный параметр датчика Modbus 29. |
| GENERIC_MODBUS_PARAM_30   | 30 — произвольный параметр датчика Modbus 30. |
| GENERIC_MODBUS_PARAM_31   | 31 — произвольный параметр датчика Modbus 31. |
| GENERIC_MODBUS_PARAM_32   | 32 — произвольный параметр датчика Modbus 32. |

| GENERIC_MODBUS_PARAM_33 33 — произвольный параметр датчика Modbus 34. GENERIC_MODBUS_PARAM_35 GENERIC_MODBUS_PARAM_36 36 — произвольный параметр датчика Modbus 35. GENERIC_MODBUS_PARAM_36 37 — произвольный параметр датчика Modbus 35. GENERIC_MODBUS_PARAM_37 37 — произвольный параметр датчика Modbus 37. GENERIC_MODBUS_PARAM_38 38 — произвольный параметр датчика Modbus 38. GENERIC_MODBUS_PARAM_39 39 — произвольный параметр датчика Modbus 39. GENERIC_MODBUS_PARAM_40 40 — произвольный параметр датчика Modbus 40. GENERIC_MODBUS_PARAM_41 41 — произвольный параметр датчика Modbus 41. GENERIC_MODBUS_PARAM_42 42 — произвольный параметр датчика Modbus 41. GENERIC_MODBUS_PARAM_43 43 — произвольный параметр датчика Modbus 43. GENERIC_MODBUS_PARAM_44 44 — произвольный параметр датчика Modbus 43. GENERIC_MODBUS_PARAM_45 GENERIC_MODBUS_PARAM_45 45 — произвольный параметр датчика Modbus 44. GENERIC_MODBUS_PARAM_45 GENERIC_MODBUS_PARAM_45 GENERIC_MODBUS_PARAM_46 46 — произвольный параметр датчика Modbus 45. GENERIC_MODBUS_PARAM_49 47 — произвольный параметр датчика Modbus 44. GENERIC_MODBUS_PARAM_49 49 — произвольный параметр датчика Modbus 47. GENERIC_MODBUS_PARAM_49 49 — произвольный параметр датчика Modbus 48. GENERIC_MODBUS_PARAM_49 49 — произвольный параметр датчика Modbus 49. GENERIC_MODBUS_PARAM_50 50 — произвольный параметр датчика Modbus 50. GENERIC_MODBUS_PARAM_50 50 — произвольный параметр датчика Modbus 51. GENERIC_MODBUS_PARAM_50 50 — произвольный параметр датчика Modbus 53. GENERIC_MODBUS_PARAM_50 50 — произвольный параметр датчика Modbus 53. GENERIC_MODBUS_PARAM_50 50 — произвольный параметр датчика Modbus 54. GENERIC_MODBUS_PARAM_50 50 — произвольный параметр датчика Modbus 55. GENERIC_MODBUS_PARAM_50 50 — произвольный параметр датчика Modbus 55. GENERIC_MODBUS_PARAM_50 50 — произвольный параметр датчика Modbus 55. GENERIC_MODBUS_PARAM_50 60 — произвольный параметр датчика Modbus 56. GENERIC_MODBUS_PARAM_60 60 — произвольный параметр датчика Modbus 56. GENERIC_MODBUS_PARAM_60 60 — произвольный параметр датчика M |                         |                                               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-----------------------------------------------|
| GENERIC_MODBUS_PARAM_35  35 — произвольный параметр датчика Modbus 35.  GENERIC_MODBUS_PARAM_36  36 — произвольный параметр датчика Modbus 36.  GENERIC_MODBUS_PARAM_37  37 — произвольный параметр датчика Modbus 37.  GENERIC_MODBUS_PARAM_38  38 — произвольный параметр датчика Modbus 38.  GENERIC_MODBUS_PARAM_39  39 — произвольный параметр датчика Modbus 40.  GENERIC_MODBUS_PARAM_40  40 — произвольный параметр датчика Modbus 40.  GENERIC_MODBUS_PARAM_41  41 — произвольный параметр датчика Modbus 41.  GENERIC_MODBUS_PARAM_42  42 — произвольный параметр датчика Modbus 42.  GENERIC_MODBUS_PARAM_43  43 — произвольный параметр датчика Modbus 43.  GENERIC_MODBUS_PARAM_44  44 — произвольный параметр датчика Modbus 44.  GENERIC_MODBUS_PARAM_45  GENERIC_MODBUS_PARAM_46  GENERIC_MODBUS_PARAM_46  GENERIC_MODBUS_PARAM_47  47 — произвольный параметр датчика Modbus 47.  GENERIC_MODBUS_PARAM_49  49 — произвольный параметр датчика Modbus 48.  GENERIC_MODBUS_PARAM_49  49 — произвольный параметр датчика Modbus 49.  GENERIC_MODBUS_PARAM_49  49 — произвольный параметр датчика Modbus 49.  GENERIC_MODBUS_PARAM_50  50 — произвольный параметр датчика Modbus 50.  GENERIC_MODBUS_PARAM_51  51 — произвольный параметр датчика Modbus 51.  GENERIC_MODBUS_PARAM_53  53 — произвольный параметр датчика Modbus 51.  GENERIC_MODBUS_PARAM_53  53 — произвольный параметр датчика Modbus 53.  GENERIC_MODBUS_PARAM_53  53 — произвольный параметр датчика Modbus 55.  GENERIC_MODBUS_PARAM_56  60 — произвольный параметр датчика Modbus 55.  GENERIC_MODBUS_PARAM_56  60 — произвольный параметр датчика Modbus 56.  GENERIC_MODBUS_PARAM_56  60 — произвольный параметр датчика Modbus 57.  GENERIC_MODBUS_PARAM_56  60 — произвольный параметр датчика Modbus 56.  GENERIC_MODBUS_PARAM_56  60 — произвольный параметр датчика Modbus 57.  GENERIC_MODBUS_PARAM_56  60 — произвольный параметр датчика Modbus 66.  GENERIC_MODBUS_PARAM_66  60 — произвольный параметр датчика Modbus 66.  GENERIC_MODBUS_PARAM_66  60 — произвольный параметр датчика Modbus 66.  GENERIC_MODBUS_PARAM_67  6  | GENERIC_MODBUS_PARAM_33 | 33 — произвольный параметр датчика Modbus 33. |
| GENERIC_MODBUS_PARAM_36 GENERIC_MODBUS_PARAM_37 37 — произвольный параметр датчика Modbus 36. GENERIC_MODBUS_PARAM_38 38 — произвольный параметр датчика Modbus 37. GENERIC_MODBUS_PARAM_39 39 — произвольный параметр датчика Modbus 39. GENERIC_MODBUS_PARAM_40 40 — произвольный параметр датчика Modbus 40. GENERIC_MODBUS_PARAM_40 41 — произвольный параметр датчика Modbus 41. GENERIC_MODBUS_PARAM_42 42 — произвольный параметр датчика Modbus 42. GENERIC_MODBUS_PARAM_43 43 — произвольный параметр датчика Modbus 43. GENERIC_MODBUS_PARAM_44 44 — произвольный параметр датчика Modbus 44. GENERIC_MODBUS_PARAM_45 45 — произвольный параметр датчика Modbus 44. GENERIC_MODBUS_PARAM_46 46 — произвольный параметр датчика Modbus 46. GENERIC_MODBUS_PARAM_47 47 — произвольный параметр датчика Modbus 47. GENERIC_MODBUS_PARAM_48 48 — произвольный параметр датчика Modbus 48. GENERIC_MODBUS_PARAM_49 49 — произвольный параметр датчика Modbus 49. GENERIC_MODBUS_PARAM_49 49 — произвольный параметр датчика Modbus 49. GENERIC_MODBUS_PARAM_50 50 — произвольный параметр датчика Modbus 50. GENERIC_MODBUS_PARAM_51 51 — произвольный параметр датчика Modbus 50. GENERIC_MODBUS_PARAM_52 52 — произвольный параметр датчика Modbus 52. GENERIC_MODBUS_PARAM_53 53 — произвольный параметр датчика Modbus 53. GENERIC_MODBUS_PARAM_54 54 — произвольный параметр датчика Modbus 55. GENERIC_MODBUS_PARAM_55 55 — произвольный параметр датчика Modbus 55. GENERIC_MODBUS_PARAM_56 66 — произвольный параметр датчика Modbus 56. GENERIC_MODBUS_PARAM_56 66 — произвольный параметр датчика Modbus 56. GENERIC_MODBUS_PARAM_69 69 — произвольный параметр датчика Modbus 56. GENERIC_MODBUS_PARAM_69 60 — произвольный параметр датчика Modbus 56. GENERIC_MODBUS_PARAM_66 60 — произвольный параметр датчика Modbus 66. GENERIC_MODBUS_PARAM_66 60 — произвольный параметр датчика Mod | GENERIC_MODBUS_PARAM_34 | 34 — произвольный параметр датчика Modbus 34. |
| GENERIC_MODBUS_PARAM_37  GENERIC_MODBUS_PARAM_38  GENERIC_MODBUS_PARAM_39  GENERIC_MODBUS_PARAM_39  GENERIC_MODBUS_PARAM_40  do — произвольный параметр датчика Modbus 40.  GENERIC_MODBUS_PARAM_41  dell— произвольный параметр датчика Modbus 41.  GENERIC_MODBUS_PARAM_42  dell— произвольный параметр датчика Modbus 41.  GENERIC_MODBUS_PARAM_43  dell— произвольный параметр датчика Modbus 41.  GENERIC_MODBUS_PARAM_43  dell— произвольный параметр датчика Modbus 43.  GENERIC_MODBUS_PARAM_44  dell— произвольный параметр датчика Modbus 44.  GENERIC_MODBUS_PARAM_45  dell— произвольный параметр датчика Modbus 45.  GENERIC_MODBUS_PARAM_46  dell— произвольный параметр датчика Modbus 46.  GENERIC_MODBUS_PARAM_49  dell— произвольный параметр датчика Modbus 48.  GENERIC_MODBUS_PARAM_49  dell— произвольный параметр датчика Modbus 48.  GENERIC_MODBUS_PARAM_49  dell— произвольный параметр датчика Modbus 48.  GENERIC_MODBUS_PARAM_50  GENERIC_MODBUS_PARAM_50  GENERIC_MODBUS_PARAM_51  dell— произвольный параметр датчика Modbus 50.  GENERIC_MODBUS_PARAM_51  dell— произвольный параметр датчика Modbus 51.  GENERIC_MODBUS_PARAM_53  dell— произвольный параметр датчика Modbus 53.  GENERIC_MODBUS_PARAM_53  delleric_MODBUS_PARAM_54  delleric_MODBUS_PARAM_55  delleric_MODBUS_PARAM_56  delleric_MODBUS_PARAM_56  delleric_MODBUS_PARAM_56  delleric_MODBUS_PARAM_56  delleric_MODBUS_PARAM_56  delleric_MODBUS_PARAM_59  delleric_MODBUS_PARAM_59  delleric_MODBUS_PARAM_60  delleric_MODBUS_PARAM_60  delleric_MODBUS_PARAM_60  delleric_MODBUS_PARAM_60  delleric_MODBUS_PARAM_60  delleric_MODBUS_PARAM_60  delleric_MODBUS_PARAM_66  delleric_MODBUS_P  | GENERIC_MODBUS_PARAM_35 | 35 — произвольный параметр датчика Modbus 35. |
| GENERIC MODBUS_PARAM_38  38 — произвольный параметр датчика Modbus 38.  GENERIC MODBUS_PARAM_40  40 — произвольный параметр датчика Modbus 40.  GENERIC MODBUS_PARAM_41  41 — произвольный параметр датчика Modbus 41.  GENERIC MODBUS_PARAM_42  42 — произвольный параметр датчика Modbus 42.  GENERIC MODBUS_PARAM_43  43 — произвольный параметр датчика Modbus 43.  GENERIC MODBUS_PARAM_44  44 — произвольный параметр датчика Modbus 44.  GENERIC MODBUS_PARAM_45  GENERIC MODBUS_PARAM_46  46 — произвольный параметр датчика Modbus 45.  GENERIC MODBUS_PARAM_47  GENERIC MODBUS_PARAM_48  48 — произвольный параметр датчика Modbus 48.  GENERIC MODBUS_PARAM_49  49 — произвольный параметр датчика Modbus 49.  GENERIC MODBUS_PARAM_50  GENERIC MODBUS_PARAM_51  GENERIC MODBUS_PARAM_51  GENERIC MODBUS_PARAM_51  GENERIC MODBUS_PARAM_52  GENERIC MODBUS_PARAM_53  GENERIC MODBUS_PARAM_53  GENERIC MODBUS_PARAM_54  GENERIC MODBUS_PARAM_55  GENERIC MODBUS_PARAM_55  GENERIC MODBUS_PARAM_56  GENERIC MODBUS_PARAM_59  GENERIC MODBUS_PARAM_59  GENERIC MODBUS_PARAM_56  GENERIC MODBUS_PARAM_56  GENERIC MODBUS_PARAM_56  GENERIC MODBUS_PARAM_56  GENERIC MODBUS_PARAM_56  GENERIC MODBUS_PARAM_59  GENERIC MODBUS_PARAM_59  GENERIC MODBUS_PARAM_59  GENERIC MODBUS_PARAM_60  GENERIC MODBUS_PARAM_66  GENERIC MODBUS_PARAM_6  | GENERIC_MODBUS_PARAM_36 | 36 — произвольный параметр датчика Modbus 36. |
| GENERIC_MODBUS_PARAM_40  GENERIC_MODBUS_PARAM_40  GENERIC_MODBUS_PARAM_41  GENERIC_MODBUS_PARAM_41  GENERIC_MODBUS_PARAM_42  GENERIC_MODBUS_PARAM_42  GENERIC_MODBUS_PARAM_43  GENERIC_MODBUS_PARAM_43  GENERIC_MODBUS_PARAM_43  GENERIC_MODBUS_PARAM_44  GENERIC_MODBUS_PARAM_45  GENERIC_MODBUS_PARAM_45  GENERIC_MODBUS_PARAM_45  GENERIC_MODBUS_PARAM_46  GENERIC_MODBUS_PARAM_46  GENERIC_MODBUS_PARAM_47  GENERIC_MODBUS_PARAM_47  GENERIC_MODBUS_PARAM_49  GENERIC_MODBUS_PARAM_49  GENERIC_MODBUS_PARAM_49  GENERIC_MODBUS_PARAM_50  GENERIC_MODBUS_PARAM_51  GENERIC_MODBUS_PARAM_51  GENERIC_MODBUS_PARAM_51  GENERIC_MODBUS_PARAM_51  GENERIC_MODBUS_PARAM_51  GENERIC_MODBUS_PARAM_52  GENERIC_MODBUS_PARAM_52  GENERIC_MODBUS_PARAM_53  GENERIC_MODBUS_PARAM_54  GENERIC_MODBUS_PARAM_55  GENERIC_MODBUS_PARAM_56  GENERIC_MODBUS_PARAM_56  GENERIC_MODBUS_PARAM_57  GENERIC_MODBUS_PARAM_57  GENERIC_MODBUS_PARAM_58  GENERIC_MODBUS_PARAM_59  GENERIC_MODBUS_PARAM_60  GENERIC_MODBUS_PARAM_61  GENERIC_MODBUS_PARAM_62  GENERIC_MODBUS_PARAM_63  GENERIC_MODBUS_PARAM_66  GENERIC_MODBUS_PARAM  | GENERIC_MODBUS_PARAM_37 | 37 — произвольный параметр датчика Modbus 37. |
| GENERIC_MODBUS_PARAM_40         40         — произвольный параметр датчика Modbus 40.           GENERIC_MODBUS_PARAM_41         41         — произвольный параметр датчика Modbus 41.           GENERIC_MODBUS_PARAM_42         42         — произвольный параметр датчика Modbus 42.           GENERIC_MODBUS_PARAM_43         43         — произвольный параметр датчика Modbus 43.           GENERIC_MODBUS_PARAM_44         44         — произвольный параметр датчика Modbus 44.           GENERIC_MODBUS_PARAM_45         45         — произвольный параметр датчика Modbus 46.           GENERIC_MODBUS_PARAM_46         46         — произвольный параметр датчика Modbus 47.           GENERIC_MODBUS_PARAM_47         47         — произвольный параметр датчика Modbus 48.           GENERIC_MODBUS_PARAM_48         48         — произвольный параметр датчика Modbus 49.           GENERIC_MODBUS_PARAM_50         50         — произвольный параметр датчика Modbus 50.           GENERIC_MODBUS_PARAM_51         51         — произвольный параметр датчика Modbus 52.           GENERIC_MODBUS_PARAM_52         52         — произвольный параметр датчика Modbus 53.           GENERIC_MODBUS_PARAM_53         53         — произвольный параметр датчика Modbus 54.           GENERIC_MODBUS_PARAM_55         55         — произвольный параметр датчика Modbus 56.           GENERIC_MODBUS_PARAM_59         59         —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | GENERIC_MODBUS_PARAM_38 | 38 — произвольный параметр датчика Modbus 38. |
| GENERIC_MODBUS_PARAM_41         41 — произвольный параметр датчика Modbus 41.           GENERIC_MODBUS_PARAM_42         42 — произвольный параметр датчика Modbus 42.           GENERIC_MODBUS_PARAM_43         43 — произвольный параметр датчика Modbus 43.           GENERIC_MODBUS_PARAM_44         44 — произвольный параметр датчика Modbus 44.           GENERIC_MODBUS_PARAM_45         45 — произвольный параметр датчика Modbus 45.           GENERIC_MODBUS_PARAM_46         46 — произвольный параметр датчика Modbus 46.           GENERIC_MODBUS_PARAM_47         47 — произвольный параметр датчика Modbus 47.           GENERIC_MODBUS_PARAM_48         48 — произвольный параметр датчика Modbus 48.           GENERIC_MODBUS_PARAM_49         49 — произвольный параметр датчика Modbus 49.           GENERIC_MODBUS_PARAM_50         50 — произвольный параметр датчика Modbus 50.           GENERIC_MODBUS_PARAM_51         51 — произвольный параметр датчика Modbus 51.           GENERIC_MODBUS_PARAM_52         52 — произвольный параметр датчика Modbus 53.           GENERIC_MODBUS_PARAM_53         53 — произвольный параметр датчика Modbus 54.           GENERIC_MODBUS_PARAM_54         54 — произвольный параметр датчика Modbus 55.           GENERIC_MODBUS_PARAM_55         55 — произвольный параметр датчика Modbus 57.           GENERIC_MODBUS_PARAM_58         58 — произвольный параметр датчика Modbus 59.           GENERIC_MODBUS_PARAM_60         60 — произвол                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | GENERIC_MODBUS_PARAM_39 | 39 — произвольный параметр датчика Modbus 39. |
| GENERIC_MODBUS_PARAM_42         42 — произвольный параметр датчика Modbus 42.           GENERIC_MODBUS_PARAM_43         43 — произвольный параметр датчика Modbus 43.           GENERIC_MODBUS_PARAM_44         44 — произвольный параметр датчика Modbus 44.           GENERIC_MODBUS_PARAM_45         45 — произвольный параметр датчика Modbus 45.           GENERIC_MODBUS_PARAM_46         46 — произвольный параметр датчика Modbus 47.           GENERIC_MODBUS_PARAM_48         48 — произвольный параметр датчика Modbus 48.           GENERIC_MODBUS_PARAM_49         49 — произвольный параметр датчика Modbus 50.           GENERIC_MODBUS_PARAM_50         50 — произвольный параметр датчика Modbus 51.           GENERIC_MODBUS_PARAM_51         51 — произвольный параметр датчика Modbus 51.           GENERIC_MODBUS_PARAM_52         52 — произвольный параметр датчика Modbus 53.           GENERIC_MODBUS_PARAM_53         53 — произвольный параметр датчика Modbus 53.           GENERIC_MODBUS_PARAM_53         53 — произвольный параметр датчика Modbus 54.           GENERIC_MODBUS_PARAM_54         54 — произвольный параметр датчика Modbus 55.           GENERIC_MODBUS_PARAM_55         55 — произвольный параметр датчика Modbus 56.           GENERIC_MODBUS_PARAM_56         56 — произвольный параметр датчика Modbus 56.           GENERIC_MODBUS_PARAM_58         58 — произвольный параметр датчика Modbus 57.           GENERIC_MODBUS_PARAM_69         60 — произвол                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | GENERIC_MODBUS_PARAM_40 | 40 — произвольный параметр датчика Modbus 40. |
| GENERIC_MODBUS_PARAM_43         43 — произвольный параметр датчика Modbus 43.           GENERIC_MODBUS_PARAM_44         44 — произвольный параметр датчика Modbus 44.           GENERIC_MODBUS_PARAM_45         45 — произвольный параметр датчика Modbus 45.           GENERIC_MODBUS_PARAM_46         46 — произвольный параметр датчика Modbus 46.           GENERIC_MODBUS_PARAM_47         47 — произвольный параметр датчика Modbus 47.           GENERIC_MODBUS_PARAM_48         48 — произвольный параметр датчика Modbus 49.           GENERIC_MODBUS_PARAM_49         49 — произвольный параметр датчика Modbus 50.           GENERIC_MODBUS_PARAM_50         50 — произвольный параметр датчика Modbus 50.           GENERIC_MODBUS_PARAM_51         51 — произвольный параметр датчика Modbus 51.           GENERIC_MODBUS_PARAM_52         52 — произвольный параметр датчика Modbus 52.           GENERIC_MODBUS_PARAM_53         53 — произвольный параметр датчика Modbus 53.           GENERIC_MODBUS_PARAM_54         54 — произвольный параметр датчика Modbus 54.           GENERIC_MODBUS_PARAM_55         55 — произвольный параметр датчика Modbus 56.           GENERIC_MODBUS_PARAM_56         56 — произвольный параметр датчика Modbus 57.           GENERIC_MODBUS_PARAM_58         58 — произвольный параметр датчика Modbus 59.           GENERIC_MODBUS_PARAM_60         60 — произвольный параметр датчика Modbus 60.           GENERIC_MODBUS_PARAM_60         60 — произвол                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | GENERIC_MODBUS_PARAM_41 | 41 — произвольный параметр датчика Modbus 41. |
| GENERIC_MODBUS_PARAM_44         44 — произвольный параметр датчика Modbus 44.           GENERIC_MODBUS_PARAM_45         45 — произвольный параметр датчика Modbus 45.           GENERIC_MODBUS_PARAM_46         46 — произвольный параметр датчика Modbus 47.           GENERIC_MODBUS_PARAM_47         47 — произвольный параметр датчика Modbus 48.           GENERIC_MODBUS_PARAM_48         48 — произвольный параметр датчика Modbus 49.           GENERIC_MODBUS_PARAM_49         49 — произвольный параметр датчика Modbus 49.           GENERIC_MODBUS_PARAM_50         50 — произвольный параметр датчика Modbus 50.           GENERIC_MODBUS_PARAM_51         51 — произвольный параметр датчика Modbus 51.           GENERIC_MODBUS_PARAM_52         52 — произвольный параметр датчика Modbus 52.           GENERIC_MODBUS_PARAM_53         53 — произвольный параметр датчика Modbus 53.           GENERIC_MODBUS_PARAM_53         54 — произвольный параметр датчика Modbus 54.           GENERIC_MODBUS_PARAM_55         55 — произвольный параметр датчика Modbus 55.           GENERIC_MODBUS_PARAM_56         56 — произвольный параметр датчика Modbus 57.           GENERIC_MODBUS_PARAM_57         57 — произвольный параметр датчика Modbus 59.           GENERIC_MODBUS_PARAM_60         60 — произвольный параметр датчика Modbus 60.           GENERIC_MODBUS_PARAM_61         61 — произвольный параметр датчика Modbus 62.           GENERIC_MODBUS_PARAM_62         62 — произвол                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | GENERIC_MODBUS_PARAM_42 | 42 — произвольный параметр датчика Modbus 42. |
| GENERIC_MODBUS_PARAM_4545 — произвольный параметр датчика Modbus 45.GENERIC_MODBUS_PARAM_4646 — произвольный параметр датчика Modbus 46.GENERIC_MODBUS_PARAM_4747 — произвольный параметр датчика Modbus 47.GENERIC_MODBUS_PARAM_4848 — произвольный параметр датчика Modbus 48.GENERIC_MODBUS_PARAM_4949 — произвольный параметр датчика Modbus 50.GENERIC_MODBUS_PARAM_5050 — произвольный параметр датчика Modbus 51.GENERIC_MODBUS_PARAM_5151 — произвольный параметр датчика Modbus 52.GENERIC_MODBUS_PARAM_5252 — произвольный параметр датчика Modbus 53.GENERIC_MODBUS_PARAM_5353 — произвольный параметр датчика Modbus 53.GENERIC_MODBUS_PARAM_5454 — произвольный параметр датчика Modbus 54.GENERIC_MODBUS_PARAM_5555 — произвольный параметр датчика Modbus 55.GENERIC_MODBUS_PARAM_5656 — произвольный параметр датчика Modbus 56.GENERIC_MODBUS_PARAM_5757 — произвольный параметр датчика Modbus 57.GENERIC_MODBUS_PARAM_5858 — произвольный параметр датчика Modbus 59.GENERIC_MODBUS_PARAM_6060 — произвольный параметр датчика Modbus 60.GENERIC_MODBUS_PARAM_6161 — произвольный параметр датчика Modbus 61.GENERIC_MODBUS_PARAM_6262 — произвольный параметр датчика Modbus 63.GENERIC_MODBUS_PARAM_6363 — произвольный параметр датчика Modbus 64.GENERIC_MODBUS_PARAM_6464 — произвольный параметр датчика Modbus 65.GENERIC_MODBUS_PARAM_6565 — произвольный параметр датчика Modbus 66.GENERIC_MODBUS_PARAM_6666 — произвольный параметр датчика Modbus 66.GENERIC_MODBUS_PARAM_6666                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | GENERIC_MODBUS_PARAM_43 | 43 — произвольный параметр датчика Modbus 43. |
| GENERIC_MODBUS_PARAM_46  GENERIC_MODBUS_PARAM_47  GENERIC_MODBUS_PARAM_48  GENERIC_MODBUS_PARAM_49  GENERIC_MODBUS_PARAM_49  GENERIC_MODBUS_PARAM_50  GENERIC_MODBUS_PARAM_51  GENERIC_MODBUS_PARAM_51  GENERIC_MODBUS_PARAM_52  GENERIC_MODBUS_PARAM_52  GENERIC_MODBUS_PARAM_53  GENERIC_MODBUS_PARAM_53  GENERIC_MODBUS_PARAM_53  GENERIC_MODBUS_PARAM_53  GENERIC_MODBUS_PARAM_53  GENERIC_MODBUS_PARAM_55  GENERIC_MODBUS_PARAM_55  GENERIC_MODBUS_PARAM_55  GENERIC_MODBUS_PARAM_56  GENERIC_MODBUS_PARAM_57  GENERIC_MODBUS_PARAM_58  GENERIC_MODBUS_PARAM_59  GENERIC_MODBUS_PARAM_55  GENERIC_MODBUS_PARAM_56  GENERIC_MODBUS_PARAM_56  GENERIC_MODBUS_PARAM_57  GENERIC_MODBUS_PARAM_58  GENERIC_MODBUS_PARAM_58  GENERIC_MODBUS_PARAM_58  GENERIC_MODBUS_PARAM_59  GENERIC_MODBUS_PARAM_60  GENERIC_MODBUS_PARAM_60  GENERIC_MODBUS_PARAM_60  GENERIC_MODBUS_PARAM_61  GENERIC_MODBUS_PARAM_61  GENERIC_MODBUS_PARAM_66  GENERIC_MODBUS_PARAM_63  GENERIC_MODBUS_PARAM_66  GENERIC_MODBUS_PARAM  | GENERIC_MODBUS_PARAM_44 | 44 — произвольный параметр датчика Modbus 44. |
| GENERIC_MODBUS_PARAM_47         47 — произвольный параметр датчика Modbus 47.           GENERIC_MODBUS_PARAM_48         48 — произвольный параметр датчика Modbus 48.           GENERIC_MODBUS_PARAM_49         49 — произвольный параметр датчика Modbus 49.           GENERIC_MODBUS_PARAM_50         50 — произвольный параметр датчика Modbus 50.           GENERIC_MODBUS_PARAM_51         51 — произвольный параметр датчика Modbus 51.           GENERIC_MODBUS_PARAM_52         52 — произвольный параметр датчика Modbus 52.           GENERIC_MODBUS_PARAM_53         53 — произвольный параметр датчика Modbus 53.           GENERIC_MODBUS_PARAM_54         54 — произвольный параметр датчика Modbus 54.           GENERIC_MODBUS_PARAM_55         55 — произвольный параметр датчика Modbus 55.           GENERIC_MODBUS_PARAM_56         56 — произвольный параметр датчика Modbus 57.           GENERIC_MODBUS_PARAM_57         57 — произвольный параметр датчика Modbus 57.           GENERIC_MODBUS_PARAM_58         58 — произвольный параметр датчика Modbus 59.           GENERIC_MODBUS_PARAM_69         60 — произвольный параметр датчика Modbus 60.           GENERIC_MODBUS_PARAM_60         60 — произвольный параметр датчика Modbus 61.           GENERIC_MODBUS_PARAM_61         61 — произвольный параметр датчика Modbus 62.           GENERIC_MODBUS_PARAM_62         62 — произвольный параметр датчика Modbus 63.           GENERIC_MODBUS_PARAM_63         63 — произвол                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | GENERIC_MODBUS_PARAM_45 | 45 — произвольный параметр датчика Modbus 45. |
| GENERIC_MODBUS_PARAM_48         48 — произвольный параметр датчика Modbus 48.           GENERIC_MODBUS_PARAM_49         49 — произвольный параметр датчика Modbus 49.           GENERIC_MODBUS_PARAM_50         50 — произвольный параметр датчика Modbus 50.           GENERIC_MODBUS_PARAM_51         51 — произвольный параметр датчика Modbus 51.           GENERIC_MODBUS_PARAM_52         52 — произвольный параметр датчика Modbus 52.           GENERIC_MODBUS_PARAM_53         53 — произвольный параметр датчика Modbus 53.           GENERIC_MODBUS_PARAM_54         54 — произвольный параметр датчика Modbus 54.           GENERIC_MODBUS_PARAM_55         55 — произвольный параметр датчика Modbus 55.           GENERIC_MODBUS_PARAM_56         56 — произвольный параметр датчика Modbus 56.           GENERIC_MODBUS_PARAM_57         57 — произвольный параметр датчика Modbus 57.           GENERIC_MODBUS_PARAM_58         58 — произвольный параметр датчика Modbus 59.           GENERIC_MODBUS_PARAM_69         60 — произвольный параметр датчика Modbus 60.           GENERIC_MODBUS_PARAM_60         60 — произвольный параметр датчика Modbus 61.           GENERIC_MODBUS_PARAM_61         61 — произвольный параметр датчика Modbus 62.           GENERIC_MODBUS_PARAM_63         63 — произвольный параметр датчика Modbus 64.           GENERIC_MODBUS_PARAM_64         64 — произвольный параметр датчика Modbus 65.           GENERIC_MODBUS_PARAM_66         65 — произвол                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | GENERIC_MODBUS_PARAM_46 | 46 — произвольный параметр датчика Modbus 46. |
| GENERIC_MODBUS_PARAM_49         49 — произвольный параметр датчика Modbus 49.           GENERIC_MODBUS_PARAM_50         50 — произвольный параметр датчика Modbus 50.           GENERIC_MODBUS_PARAM_51         51 — произвольный параметр датчика Modbus 51.           GENERIC_MODBUS_PARAM_52         52 — произвольный параметр датчика Modbus 52.           GENERIC_MODBUS_PARAM_53         53 — произвольный параметр датчика Modbus 53.           GENERIC_MODBUS_PARAM_54         54 — произвольный параметр датчика Modbus 54.           GENERIC_MODBUS_PARAM_55         55 — произвольный параметр датчика Modbus 55.           GENERIC_MODBUS_PARAM_56         56 — произвольный параметр датчика Modbus 56.           GENERIC_MODBUS_PARAM_57         57 — произвольный параметр датчика Modbus 57.           GENERIC_MODBUS_PARAM_58         58 — произвольный параметр датчика Modbus 59.           GENERIC_MODBUS_PARAM_60         60 — произвольный параметр датчика Modbus 60.           GENERIC_MODBUS_PARAM_61         61 — произвольный параметр датчика Modbus 61.           GENERIC_MODBUS_PARAM_62         62 — произвольный параметр датчика Modbus 63.           GENERIC_MODBUS_PARAM_63         63 — произвольный параметр датчика Modbus 64.           GENERIC_MODBUS_PARAM_64         64 — произвольный параметр датчика Modbus 65.           GENERIC_MODBUS_PARAM_65         65 — произвольный параметр датчика Modbus 66.           GENERIC_MODBUS_PARAM_66         66 — произвол                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | GENERIC_MODBUS_PARAM_47 | 47 — произвольный параметр датчика Modbus 47. |
| GENERIC_MODBUS_PARAM_50         50 — произвольный параметр датчика Modbus 50.           GENERIC_MODBUS_PARAM_51         51 — произвольный параметр датчика Modbus 51.           GENERIC_MODBUS_PARAM_52         52 — произвольный параметр датчика Modbus 52.           GENERIC_MODBUS_PARAM_53         53 — произвольный параметр датчика Modbus 53.           GENERIC_MODBUS_PARAM_54         54 — произвольный параметр датчика Modbus 54.           GENERIC_MODBUS_PARAM_55         55 — произвольный параметр датчика Modbus 55.           GENERIC_MODBUS_PARAM_56         56 — произвольный параметр датчика Modbus 56.           GENERIC_MODBUS_PARAM_57         57 — произвольный параметр датчика Modbus 58.           GENERIC_MODBUS_PARAM_59         59 — произвольный параметр датчика Modbus 60.           GENERIC_MODBUS_PARAM_60         60 — произвольный параметр датчика Modbus 61.           GENERIC_MODBUS_PARAM_61         61 — произвольный параметр датчика Modbus 62.           GENERIC_MODBUS_PARAM_62         62 — произвольный параметр датчика Modbus 63.           GENERIC_MODBUS_PARAM_63         63 — произвольный параметр датчика Modbus 64.           GENERIC_MODBUS_PARAM_64         64 — произвольный параметр датчика Modbus 65.           GENERIC_MODBUS_PARAM_65         65 — произвольный параметр датчика Modbus 66.           GENERIC_MODBUS_PARAM_66         66 — произвольный параметр датчика Modbus 66.           GENERIC_MODBUS_PARAM_66         66 — произвол                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | GENERIC_MODBUS_PARAM_48 | 48 — произвольный параметр датчика Modbus 48. |
| GENERIC_MODBUS_PARAM_51         51 — произвольный параметр датчика Modbus 51.           GENERIC_MODBUS_PARAM_52         52 — произвольный параметр датчика Modbus 52.           GENERIC_MODBUS_PARAM_53         53 — произвольный параметр датчика Modbus 53.           GENERIC_MODBUS_PARAM_54         54 — произвольный параметр датчика Modbus 54.           GENERIC_MODBUS_PARAM_55         55 — произвольный параметр датчика Modbus 55.           GENERIC_MODBUS_PARAM_56         56 — произвольный параметр датчика Modbus 56.           GENERIC_MODBUS_PARAM_57         57 — произвольный параметр датчика Modbus 57.           GENERIC_MODBUS_PARAM_58         58 — произвольный параметр датчика Modbus 59.           GENERIC_MODBUS_PARAM_69         60 — произвольный параметр датчика Modbus 60.           GENERIC_MODBUS_PARAM_60         61 — произвольный параметр датчика Modbus 61.           GENERIC_MODBUS_PARAM_62         62 — произвольный параметр датчика Modbus 62.           GENERIC_MODBUS_PARAM_63         63 — произвольный параметр датчика Modbus 63.           GENERIC_MODBUS_PARAM_64         64 — произвольный параметр датчика Modbus 64.           GENERIC_MODBUS_PARAM_65         65 — произвольный параметр датчика Modbus 65.           GENERIC_MODBUS_PARAM_66         66 — произвольный параметр датчика Modbus 66.           GENERIC_MODBUS_PARAM_66         66 — произвольный параметр датчика Modbus 66.           GENERIC_MODBUS_PARAM_67         67 — произвол                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | GENERIC_MODBUS_PARAM_49 | 49 — произвольный параметр датчика Modbus 49. |
| GENERIC_MODBUS_PARAM_52       52 — произвольный параметр датчика Modbus 52.         GENERIC_MODBUS_PARAM_53       53 — произвольный параметр датчика Modbus 53.         GENERIC_MODBUS_PARAM_54       54 — произвольный параметр датчика Modbus 54.         GENERIC_MODBUS_PARAM_55       55 — произвольный параметр датчика Modbus 55.         GENERIC_MODBUS_PARAM_56       56 — произвольный параметр датчика Modbus 56.         GENERIC_MODBUS_PARAM_57       57 — произвольный параметр датчика Modbus 58.         GENERIC_MODBUS_PARAM_58       58 — произвольный параметр датчика Modbus 59.         GENERIC_MODBUS_PARAM_69       60 — произвольный параметр датчика Modbus 60.         GENERIC_MODBUS_PARAM_60       61 — произвольный параметр датчика Modbus 61.         GENERIC_MODBUS_PARAM_61       61 — произвольный параметр датчика Modbus 62.         GENERIC_MODBUS_PARAM_63       63 — произвольный параметр датчика Modbus 63.         GENERIC_MODBUS_PARAM_64       64 — произвольный параметр датчика Modbus 64.         GENERIC_MODBUS_PARAM_65       65 — произвольный параметр датчика Modbus 65.         GENERIC_MODBUS_PARAM_66       66 — произвольный параметр датчика Modbus 66.         GENERIC_MODBUS_PARAM_66       66 — произвольный параметр датчика Modbus 67.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | GENERIC_MODBUS_PARAM_50 | 50 — произвольный параметр датчика Modbus 50. |
| GENERIC_MODBUS_PARAM_53       53 — произвольный параметр датчика Modbus 53.         GENERIC_MODBUS_PARAM_54       54 — произвольный параметр датчика Modbus 54.         GENERIC_MODBUS_PARAM_55       55 — произвольный параметр датчика Modbus 55.         GENERIC_MODBUS_PARAM_56       56 — произвольный параметр датчика Modbus 56.         GENERIC_MODBUS_PARAM_57       57 — произвольный параметр датчика Modbus 57.         GENERIC_MODBUS_PARAM_58       58 — произвольный параметр датчика Modbus 58.         GENERIC_MODBUS_PARAM_59       59 — произвольный параметр датчика Modbus 59.         GENERIC_MODBUS_PARAM_60       60 — произвольный параметр датчика Modbus 60.         GENERIC_MODBUS_PARAM_61       61 — произвольный параметр датчика Modbus 62.         GENERIC_MODBUS_PARAM_62       62 — произвольный параметр датчика Modbus 63.         GENERIC_MODBUS_PARAM_63       63 — произвольный параметр датчика Modbus 64.         GENERIC_MODBUS_PARAM_64       64 — произвольный параметр датчика Modbus 65.         GENERIC_MODBUS_PARAM_65       65 — произвольный параметр датчика Modbus 65.         GENERIC_MODBUS_PARAM_66       66 — произвольный параметр датчика Modbus 66.         GENERIC_MODBUS_PARAM_66       66 — произвольный параметр датчика Modbus 67.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | GENERIC_MODBUS_PARAM_51 | 51 — произвольный параметр датчика Modbus 51. |
| GENERIC_MODBUS_PARAM_54       54 — произвольный параметр датчика Modbus 54.         GENERIC_MODBUS_PARAM_55       55 — произвольный параметр датчика Modbus 55.         GENERIC_MODBUS_PARAM_56       56 — произвольный параметр датчика Modbus 56.         GENERIC_MODBUS_PARAM_57       57 — произвольный параметр датчика Modbus 57.         GENERIC_MODBUS_PARAM_58       58 — произвольный параметр датчика Modbus 58.         GENERIC_MODBUS_PARAM_59       59 — произвольный параметр датчика Modbus 59.         GENERIC_MODBUS_PARAM_60       60 — произвольный параметр датчика Modbus 60.         GENERIC_MODBUS_PARAM_61       61 — произвольный параметр датчика Modbus 61.         GENERIC_MODBUS_PARAM_62       62 — произвольный параметр датчика Modbus 62.         GENERIC_MODBUS_PARAM_63       63 — произвольный параметр датчика Modbus 63.         GENERIC_MODBUS_PARAM_64       64 — произвольный параметр датчика Modbus 64.         GENERIC_MODBUS_PARAM_65       65 — произвольный параметр датчика Modbus 65.         GENERIC_MODBUS_PARAM_66       66 — произвольный параметр датчика Modbus 66.         GENERIC_MODBUS_PARAM_67       67 — произвольный параметр датчика Modbus 67.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | GENERIC_MODBUS_PARAM_52 | 52 — произвольный параметр датчика Modbus 52. |
| GENERIC_MODBUS_PARAM_55       55 — произвольный параметр датчика Modbus 55.         GENERIC_MODBUS_PARAM_56       56 — произвольный параметр датчика Modbus 56.         GENERIC_MODBUS_PARAM_57       57 — произвольный параметр датчика Modbus 57.         GENERIC_MODBUS_PARAM_58       58 — произвольный параметр датчика Modbus 58.         GENERIC_MODBUS_PARAM_59       59 — произвольный параметр датчика Modbus 59.         GENERIC_MODBUS_PARAM_60       60 — произвольный параметр датчика Modbus 60.         GENERIC_MODBUS_PARAM_61       61 — произвольный параметр датчика Modbus 61.         GENERIC_MODBUS_PARAM_62       62 — произвольный параметр датчика Modbus 63.         GENERIC_MODBUS_PARAM_63       63 — произвольный параметр датчика Modbus 64.         GENERIC_MODBUS_PARAM_64       64 — произвольный параметр датчика Modbus 65.         GENERIC_MODBUS_PARAM_65       65 — произвольный параметр датчика Modbus 65.         GENERIC_MODBUS_PARAM_66       66 — произвольный параметр датчика Modbus 66.         GENERIC_MODBUS_PARAM_67       67 — произвольный параметр датчика Modbus 67.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | GENERIC_MODBUS_PARAM_53 | 53 — произвольный параметр датчика Modbus 53. |
| GENERIC_MODBUS_PARAM_56       56 — произвольный параметр датчика Modbus 56.         GENERIC_MODBUS_PARAM_57       57 — произвольный параметр датчика Modbus 57.         GENERIC_MODBUS_PARAM_58       58 — произвольный параметр датчика Modbus 58.         GENERIC_MODBUS_PARAM_59       59 — произвольный параметр датчика Modbus 59.         GENERIC_MODBUS_PARAM_60       60 — произвольный параметр датчика Modbus 60.         GENERIC_MODBUS_PARAM_61       61 — произвольный параметр датчика Modbus 61.         GENERIC_MODBUS_PARAM_62       62 — произвольный параметр датчика Modbus 62.         GENERIC_MODBUS_PARAM_63       63 — произвольный параметр датчика Modbus 63.         GENERIC_MODBUS_PARAM_64       64 — произвольный параметр датчика Modbus 64.         GENERIC_MODBUS_PARAM_65       65 — произвольный параметр датчика Modbus 65.         GENERIC_MODBUS_PARAM_66       66 — произвольный параметр датчика Modbus 66.         GENERIC_MODBUS_PARAM_67       67 — произвольный параметр датчика Modbus 67.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | GENERIC_MODBUS_PARAM_54 | 54 — произвольный параметр датчика Modbus 54. |
| GENERIC_MODBUS_PARAM_57       57 — произвольный параметр датчика Modbus 57.         GENERIC_MODBUS_PARAM_58       58 — произвольный параметр датчика Modbus 58.         GENERIC_MODBUS_PARAM_59       59 — произвольный параметр датчика Modbus 59.         GENERIC_MODBUS_PARAM_60       60 — произвольный параметр датчика Modbus 60.         GENERIC_MODBUS_PARAM_61       61 — произвольный параметр датчика Modbus 61.         GENERIC_MODBUS_PARAM_62       62 — произвольный параметр датчика Modbus 62.         GENERIC_MODBUS_PARAM_63       63 — произвольный параметр датчика Modbus 63.         GENERIC_MODBUS_PARAM_64       64 — произвольный параметр датчика Modbus 64.         GENERIC_MODBUS_PARAM_65       65 — произвольный параметр датчика Modbus 65.         GENERIC_MODBUS_PARAM_66       66 — произвольный параметр датчика Modbus 66.         GENERIC_MODBUS_PARAM_67       67 — произвольный параметр датчика Modbus 67.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | GENERIC_MODBUS_PARAM_55 | 55 — произвольный параметр датчика Modbus 55. |
| GENERIC_MODBUS_PARAM_58       58 — произвольный параметр датчика Modbus 58.         GENERIC_MODBUS_PARAM_59       59 — произвольный параметр датчика Modbus 59.         GENERIC_MODBUS_PARAM_60       60 — произвольный параметр датчика Modbus 60.         GENERIC_MODBUS_PARAM_61       61 — произвольный параметр датчика Modbus 61.         GENERIC_MODBUS_PARAM_62       62 — произвольный параметр датчика Modbus 62.         GENERIC_MODBUS_PARAM_63       63 — произвольный параметр датчика Modbus 63.         GENERIC_MODBUS_PARAM_64       64 — произвольный параметр датчика Modbus 64.         GENERIC_MODBUS_PARAM_65       65 — произвольный параметр датчика Modbus 65.         GENERIC_MODBUS_PARAM_66       66 — произвольный параметр датчика Modbus 66.         GENERIC_MODBUS_PARAM_67       67 — произвольный параметр датчика Modbus 67.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | GENERIC_MODBUS_PARAM_56 | 56 — произвольный параметр датчика Modbus 56. |
| GENERIC_MODBUS_PARAM_59       59 — произвольный параметр датчика Modbus 59.         GENERIC_MODBUS_PARAM_60       60 — произвольный параметр датчика Modbus 60.         GENERIC_MODBUS_PARAM_61       61 — произвольный параметр датчика Modbus 61.         GENERIC_MODBUS_PARAM_62       62 — произвольный параметр датчика Modbus 62.         GENERIC_MODBUS_PARAM_63       63 — произвольный параметр датчика Modbus 63.         GENERIC_MODBUS_PARAM_64       64 — произвольный параметр датчика Modbus 64.         GENERIC_MODBUS_PARAM_65       65 — произвольный параметр датчика Modbus 65.         GENERIC_MODBUS_PARAM_66       66 — произвольный параметр датчика Modbus 66.         GENERIC_MODBUS_PARAM_67       67 — произвольный параметр датчика Modbus 67.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | GENERIC_MODBUS_PARAM_57 | 57 — произвольный параметр датчика Modbus 57. |
| GENERIC_MODBUS_PARAM_60       60 — произвольный параметр датчика Modbus 60.         GENERIC_MODBUS_PARAM_61       61 — произвольный параметр датчика Modbus 61.         GENERIC_MODBUS_PARAM_62       62 — произвольный параметр датчика Modbus 62.         GENERIC_MODBUS_PARAM_63       63 — произвольный параметр датчика Modbus 63.         GENERIC_MODBUS_PARAM_64       64 — произвольный параметр датчика Modbus 64.         GENERIC_MODBUS_PARAM_65       65 — произвольный параметр датчика Modbus 65.         GENERIC_MODBUS_PARAM_66       66 — произвольный параметр датчика Modbus 66.         GENERIC_MODBUS_PARAM_67       67 — произвольный параметр датчика Modbus 67.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | GENERIC_MODBUS_PARAM_58 | 58 — произвольный параметр датчика Modbus 58. |
| GENERIC_MODBUS_PARAM_61       61 — произвольный параметр датчика Modbus 61.         GENERIC_MODBUS_PARAM_62       62 — произвольный параметр датчика Modbus 62.         GENERIC_MODBUS_PARAM_63       63 — произвольный параметр датчика Modbus 63.         GENERIC_MODBUS_PARAM_64       64 — произвольный параметр датчика Modbus 64.         GENERIC_MODBUS_PARAM_65       65 — произвольный параметр датчика Modbus 65.         GENERIC_MODBUS_PARAM_66       66 — произвольный параметр датчика Modbus 66.         GENERIC_MODBUS_PARAM_67       67 — произвольный параметр датчика Modbus 67.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | GENERIC_MODBUS_PARAM_59 | 59— произвольный параметр датчика Modbus 59.  |
| GENERIC_MODBUS_PARAM_62       62 — произвольный параметр датчика Modbus 62.         GENERIC_MODBUS_PARAM_63       63 — произвольный параметр датчика Modbus 63.         GENERIC_MODBUS_PARAM_64       64 — произвольный параметр датчика Modbus 64.         GENERIC_MODBUS_PARAM_65       65 — произвольный параметр датчика Modbus 65.         GENERIC_MODBUS_PARAM_66       66 — произвольный параметр датчика Modbus 66.         GENERIC_MODBUS_PARAM_67       67 — произвольный параметр датчика Modbus 67.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | GENERIC_MODBUS_PARAM_60 | 60 — произвольный параметр датчика Modbus 60. |
| GENERIC_MODBUS_PARAM_63       63 — произвольный параметр датчика Modbus 63.         GENERIC_MODBUS_PARAM_64       64 — произвольный параметр датчика Modbus 64.         GENERIC_MODBUS_PARAM_65       65 — произвольный параметр датчика Modbus 65.         GENERIC_MODBUS_PARAM_66       66 — произвольный параметр датчика Modbus 66.         GENERIC_MODBUS_PARAM_67       67 — произвольный параметр датчика Modbus 67.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | GENERIC_MODBUS_PARAM_61 | 61 — произвольный параметр датчика Modbus 61. |
| GENERIC_MODBUS_PARAM_64       64 — произвольный параметр датчика Modbus 64.         GENERIC_MODBUS_PARAM_65       65 — произвольный параметр датчика Modbus 65.         GENERIC_MODBUS_PARAM_66       66 — произвольный параметр датчика Modbus 66.         GENERIC_MODBUS_PARAM_67       67 — произвольный параметр датчика Modbus 67.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | GENERIC_MODBUS_PARAM_62 | 62 — произвольный параметр датчика Modbus 62. |
| GENERIC_MODBUS_PARAM_65       65 — произвольный параметр датчика Modbus 65.         GENERIC_MODBUS_PARAM_66       66 — произвольный параметр датчика Modbus 66.         GENERIC_MODBUS_PARAM_67       67 — произвольный параметр датчика Modbus 67.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | GENERIC_MODBUS_PARAM_63 | 63 — произвольный параметр датчика Modbus 63. |
| GENERIC_MODBUS_PARAM_66       66 — произвольный параметр датчика Modbus 66.         GENERIC_MODBUS_PARAM_67       67 — произвольный параметр датчика Modbus 67.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | GENERIC_MODBUS_PARAM_64 | 64 — произвольный параметр датчика Modbus 64. |
| GENERIC_MODBUS_PARAM_67 67 — произвольный параметр датчика Modbus 67.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | GENERIC_MODBUS_PARAM_65 | 65 — произвольный параметр датчика Modbus 65. |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | GENERIC_MODBUS_PARAM_66 | 66 — произвольный параметр датчика Modbus 66. |
| <b>GENERIC_MODBUS_PARAM_68</b> 68 — произвольный параметр датчика Modbus 68.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | GENERIC_MODBUS_PARAM_67 | 67 — произвольный параметр датчика Modbus 67. |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | GENERIC_MODBUS_PARAM_68 | 68— произвольный параметр датчика Modbus 68.  |

| GENERIC_MODBUS_PARAM_69  | 69 — произвольный параметр датчика Modbus 69.                                                |
|--------------------------|----------------------------------------------------------------------------------------------|
| GENERIC_MODBUS_PARAM_70  | 70 — произвольный параметр датчика Modbus 70.                                                |
| GENERIC_MODBUS_PARAM_71  | 71 — произвольный параметр датчика Modbus 71.                                                |
| GENERIC_MODBUS_PARAM_72  | 72 — произвольный параметр датчика Modbus 72.                                                |
| GENERIC_MODBUS_PARAM_73  | 73 — произвольный параметр датчика Modbus 73.                                                |
|                          | 73 — произвольный параметр датчика Modbus 73.  74 — произвольный параметр датчика Modbus 74. |
| GENERIC_MODBUS_PARAM_74  | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                      |
| GENERIC_MODBUS_PARAM_75  | 75 — произвольный параметр датчика Modbus 75.                                                |
| GENERIC_MODBUS_PARAM_76  | 76 — произвольный параметр датчика Modbus 76.                                                |
| GENERIC_MODBUS_PARAM_77  | 77 — произвольный параметр датчика Modbus 77.                                                |
| GENERIC_MODBUS_PARAM_78  | 78— произвольный параметр датчика Modbus 78.                                                 |
| GENERIC_MODBUS_PARAM_79  | 79— произвольный параметр датчика Modbus 79.                                                 |
| GENERIC_MODBUS_PARAM_80  | 80 — произвольный параметр датчика Modbus 80.                                                |
| GENERIC_MODBUS_PARAM_81  | 81 — произвольный параметр датчика Modbus 81.                                                |
| GENERIC_MODBUS_PARAM_82  | 82 — произвольный параметр датчика Modbus 82.                                                |
| GENERIC_MODBUS_PARAM_83  | 83 — произвольный параметр датчика Modbus 83.                                                |
| GENERIC_MODBUS_PARAM_84  | 84 — произвольный параметр датчика Modbus 84.                                                |
| GENERIC_MODBUS_PARAM_85  | 85 — произвольный параметр датчика Modbus 85.                                                |
| GENERIC_MODBUS_PARAM_86  | 86 — произвольный параметр датчика Modbus 86.                                                |
| GENERIC_MODBUS_PARAM_87  | 87 — произвольный параметр датчика Modbus 87.                                                |
| GENERIC_MODBUS_PARAM_88  | 88 — произвольный параметр датчика Modbus 88.                                                |
| GENERIC_MODBUS_PARAM_89  | 89 — произвольный параметр датчика Modbus 89.                                                |
| GENERIC_MODBUS_PARAM_90  | 90 — произвольный параметр датчика Modbus 90.                                                |
| GENERIC_MODBUS_PARAM_91  | 91 — произвольный параметр датчика Modbus 91.                                                |
| GENERIC_MODBUS_PARAM_92  | 92 — произвольный параметр датчика Modbus 92.                                                |
| GENERIC_MODBUS_PARAM_93  | 93— произвольный параметр датчика Modbus 93.                                                 |
| GENERIC_MODBUS_PARAM_94  | 94 — произвольный параметр датчика Modbus 94.                                                |
| GENERIC_MODBUS_PARAM_95  | 95 — произвольный параметр датчика Modbus 95.                                                |
| GENERIC_MODBUS_PARAM_96  | 96 — произвольный параметр датчика Modbus 96.                                                |
| GENERIC_MODBUS_PARAM_97  | 97 — произвольный параметр датчика Modbus 97.                                                |
| GENERIC_MODBUS_PARAM_98  | 98 — произвольный параметр датчика Modbus 98.                                                |
| GENERIC_MODBUS_PARAM_99  | 99 — произвольный параметр датчика Modbus 99.                                                |
| GENERIC_MODBUS_PARAM_100 | 100 — произвольный параметр датчика Modbus 100.                                              |
| GENERIC_CAN_PARAM_1      | 101 — произвольный параметр CAN 1.                                                           |
| GENERIC_CAN_PARAM_2      | 102 — произвольный параметр CAN 2.                                                           |
| GENERIC_CAN_PARAM_3      | 103 — произвольный параметр CAN 3.                                                           |
| GENERIC_CAN_PARAM_4      | 104 — произвольный параметр CAN 4.                                                           |
| <b>.</b>                 |                                                                                              |

|                      | 105 — произрольный парамотр САМ 5   |
|----------------------|-------------------------------------|
| GENERIC_CAN_PARAM_5  | 105 — произвольный параметр CAN 5.  |
| GENERIC_CAN_PARAM_6  | 106 — произвольный параметр CAN 6.  |
| GENERIC_CAN_PARAM_7  | 107 — произвольный параметр САN 7.  |
| GENERIC_CAN_PARAM_8  | 108 — произвольный параметр CAN 8.  |
| GENERIC_CAN_PARAM_9  | 109 — произвольный параметр CAN 9.  |
| GENERIC_CAN_PARAM_10 | 110 — произвольный параметр CAN 10. |
| GENERIC_CAN_PARAM_11 | 111 — произвольный параметр CAN 11. |
| GENERIC_CAN_PARAM_12 | 112 — произвольный параметр CAN 12. |
| GENERIC_CAN_PARAM_13 | 113 — произвольный параметр CAN 13. |
| GENERIC_CAN_PARAM_14 | 114 — произвольный параметр CAN 14. |
| GENERIC_CAN_PARAM_15 | 115 — произвольный параметр CAN 15. |
| GENERIC_CAN_PARAM_16 | 116 — произвольный параметр CAN 16. |
| GENERIC_CAN_PARAM_17 | 117 — произвольный параметр CAN 17. |
| GENERIC_CAN_PARAM_18 | 118 — произвольный параметр CAN 18. |
| GENERIC_CAN_PARAM_19 | 119 — произвольный параметр CAN 19. |
| GENERIC_CAN_PARAM_20 | 120 — произвольный параметр CAN 20. |
| GENERIC_CAN_PARAM_21 | 121 — произвольный параметр CAN 21. |
| GENERIC_CAN_PARAM_22 | 122 — произвольный параметр CAN 22. |
| GENERIC_CAN_PARAM_23 | 123 — произвольный параметр CAN 23. |
| GENERIC_CAN_PARAM_24 | 124 — произвольный параметр CAN 24. |
| GENERIC_CAN_PARAM_25 | 125 — произвольный параметр CAN 25. |
| GENERIC_CAN_PARAM_26 | 126 — произвольный параметр CAN 26. |
| GENERIC_CAN_PARAM_27 | 127 — произвольный параметр CAN 27. |
| GENERIC_CAN_PARAM_28 | 128 — произвольный параметр CAN 28. |
| GENERIC_CAN_PARAM_29 | 129 — произвольный параметр CAN 29. |
| GENERIC_CAN_PARAM_30 | 130 — произвольный параметр CAN 30. |
| GENERIC_CAN_PARAM_31 | 131 — произвольный параметр CAN 31. |
| GENERIC_CAN_PARAM_32 | 132 — произвольный параметр CAN 32. |
| GENERIC_CAN_PARAM_33 | 133 — произвольный параметр CAN 33. |
| GENERIC_CAN_PARAM_34 | 134 — произвольный параметр CAN 34. |
| GENERIC_CAN_PARAM_35 | 135 — произвольный параметр CAN 35. |
| GENERIC_CAN_PARAM_36 | 136 — произвольный параметр CAN 36. |
| GENERIC_CAN_PARAM_37 | 137 — произвольный параметр CAN 37. |
| GENERIC_CAN_PARAM_38 | 138 — произвольный параметр CAN 38. |
| GENERIC_CAN_PARAM_39 | 139 — произвольный параметр CAN 39. |
| GENERIC_CAN_PARAM_40 | 140 — произвольный параметр CAN 40. |

| GENERIC_CAN_PARAM_41 | 141 — произвольный параметр CAN 41. |
|----------------------|-------------------------------------|
| GENERIC_CAN_PARAM_42 | 142 — произвольный параметр CAN 42. |
| GENERIC_CAN_PARAM_43 | 143 — произвольный параметр CAN 43. |
| GENERIC_CAN_PARAM_44 | 144 — произвольный параметр CAN 44. |
| GENERIC_CAN_PARAM_45 | 145 — произвольный параметр CAN 45. |
| GENERIC_CAN_PARAM_46 | 146 — произвольный параметр CAN 46. |
| GENERIC_CAN_PARAM_47 | 147 — произвольный параметр CAN 47. |
| GENERIC_CAN_PARAM_48 | 148 — произвольный параметр CAN 48. |
| GENERIC_CAN_PARAM_49 | 149 — произвольный параметр CAN 49. |
| GENERIC_CAN_PARAM_50 | 150 — произвольный параметр CAN 50. |

# GenericParamType

Типы данных произвольных параметров.

| GENERIC_PARAM_INVALID_TYPE = 0 | 0 — невалидное значение.                                                                                    |
|--------------------------------|-------------------------------------------------------------------------------------------------------------|
| GENERIC_PARAM_UINT             | 1 — целое беззнаковое число (uint32), может использоваться с уровневым адаптивом. Возможна потеря точности! |
| GENERIC_PARAM_INT              | 2— целое знаковое число (int32), может использоваться с уровневым адаптивом. Возможна потеря точности!      |
| GENERIC_PARAM_FLOAT            | 3 — число с плавающей точкой, может использоваться с уровневым адаптивом.                                   |
| GENERIC_PARAM_BITFIELD         | 4 — битовое поле.                                                                                           |

# LongParamId

Длинные параметры.

| LONG_INVALID_PARAM = 0         | 0 — не используется.                                                             |
|--------------------------------|----------------------------------------------------------------------------------|
| TOTAL_FUEL_USED_SPN_250        | 1 — суммарно использованное топливо, л.                                          |
| SERVICE_DISTANCE_SPN_914       | 2 — пробег до ТО, км.                                                            |
| ENGINE_HOURS_SPN_247           | 3 — моточасы, ч.                                                                 |
| TOTAL_VEHICLE_DISTANCE_SPN_917 | 4 — полный пробег, м.                                                            |
| TRIP_DISTANCE_SPN_918          | 5 — пробег за поездку, м.                                                        |
| CALCULATED_FUEL_CONSUMPTION    | 6 — потребление топлива, вычисленное по мгновенному расходу с прошлой записи, л. |

# DiscrParamId

Дискретные параметры.

| DISCR_INVALID_PARAM = 0             | 0 — не используется.                                |
|-------------------------------------|-----------------------------------------------------|
| BRAKE_SWITCH_SPN_597                | 1 — педаль тормоза.                                 |
| PARKING_BRAKE_SWITCH_SPN_70         | 2 — ручник.                                         |
| OIL_PRESSURE_EMERGENCY_LAMP         | 3 — аварийная лампа давления масла.                 |
| CHECK_ENGINE_LAMP                   | 4 — аварийная лампа неисправности двигателя.        |
| ABS_FAULT_LAMP                      | 5 — лампа неисправности ABS.                        |
| BRAKE_FAULT_LAMP                    | 6 — лампа неисправности тормозов.                   |
| ESP_FAULT_LAMP                      | 7 — лампа неисправности ESP.                        |
| CRUISE_CONTROL_SPN_595              | 8 — круиз-контроль.                                 |
| CLUTCH_SWITCH_SPN_598               | 9 — педаль сцепления.                               |
| ACCEL_PEDAL_LOW_IDLE_SWITCH_SPN_558 | 10 — режим холостого хода.                          |
| ACCEL_PEDAL_KICKDOWN_SWITCH_SPN_559 | 11 — режим kickdown.                                |
| TORQUE_MODE_SPN_899                 | 12 — режим крутящего момента двигателя.             |
| PTO_STATE_SPN_976                   | 13 — режим PTO.                                     |
| CRUISE_CONTROL_STATE_SPN_527        | 14 — состояние круиз-контроля.                      |
| IGNITION                            | 15 — зажигание.                                     |
| IGNITION_KEY_IN_LOCK                | 16 — ключ в замке зажигания.                        |
| DYNAMIC_IGNITION_2                  | 17 — динамическое зажигание 2.                      |
| WEBASTO                             | 18 — webasto.                                       |
| ENGINE_RUN                          | 19 — двигатель работает.                            |
| ADD_ENGINE_RUN                      | 20 — дополнительный двигатель работает.             |
| READY_FOR_MOVE                      | 21 — готов к движению.                              |
| ENGINE_ON_LNG                       | 22 — двигатель работает на СПГ.                     |
| LEFT_FRONT_DOOR_OPEN                | 23 — левая передняя дверь открыта.                  |
| RIGHT_FRONT_DOOR_OPEN               | 24 — правая передняя дверь открыта.                 |
| LEFT_REAR_DOOR_OPEN                 | 25 — левая задняя дверь открыта.                    |
| RIGHT_REAR_DOOR_OPEN                | 26 — правая задняя дверь открыта.                   |
| LUGGAGE_BOOT_DOOR_OPEN              | 27 — открыт багажник.                               |
| ENGINE_HOOD_OPEN                    | 28 — открыт капот.                                  |
| CHARGER_WIRE_CONNECTED              | 29 — провод зарядки подключен.                      |
| BATTERY_CHARGE                      | 30 — зарядка аккумуляторной батареи включена.       |
| AUTO_CLOSED                         | 31 — автомобиль закрыт.                             |
| AUTO_CLOSED_BY_STANDARD_RC          | 32 — автомобиль закрыт при помощи штатного брелока. |

| STANDARD ALARM ON                       | 33 — штатная сигнализация поставлена на охрану.                         |
|-----------------------------------------|-------------------------------------------------------------------------|
| STANDARD_ALARM_EMULATION_ON             | 34 — эмуляция штатной сигнализации активирована.                        |
| STANDARD_RC_CLOSING_SIGNAL_SENT         | 35— сигнал закрытия с помощью заводского ПДУ был отправлен.             |
| STANDARD_RC_OPENING_SIGNAL_SENT         | 36— сигнал открытия с помощью заводского ПДУ был отправлен.             |
| REPEAT_CLOSING_SIGNAL_SENT              | 37 — сигнал перепостановки был отправлен.                               |
| LUGGAGE_BOOT_OPENED_BY_RC               | 38 — багажник был открыт ПДУ.                                           |
| CAN_SLEEP_MODE                          | 39 — CAN-модуль в спящем режиме.                                        |
| STANDARD_RC_CLOSING_SIGNAL_SENT_3_TIMES | 40 — сигнал закрытия с помощью заводского ПДУ был отправлен трехкратно. |
| AGB_PARKING_ON                          | 41 — АКПП в режиме «Парковка».                                          |
| GB_REVERSE_ON                           | 42 — КПП в режиме «Задний ход».                                         |
| AGB_NEUTRAL_ON                          | 43 — АКПП в режиме «Нейтраль».                                          |
| AGB_MOVE_ON                             | 44 — АКПП в режиме «Движение».                                          |
| PARKING_LIGHTS                          | 45 — парковочные огни включены.                                         |
| LOW_BEAM_HEADLIGHTS                     | 46 — ближний свет фар включен.                                          |
| HIGH_BEAM_HEADLIGHTS                    | 47 — дальний свет фар включен.                                          |
| REAR_FOG_LIGHTS                         | 48 — задние противотуманные фонари включены.                            |
| AIR_CONDITIONING                        | 49 — кондиционер включен.                                               |
| AUTO_RETARDER                           | 50 — автоматический ретардер.                                           |
| MANUAL_RETARDER                         | 51 — ручной ретардер.                                                   |
| DRIVER_SEAT_BELT                        | 52 — ремень водителя пристегнут.                                        |
| FRONT_PASSENGER_SEAT_BELT               | 53 — ремень переднего пассажира пристегнут.                             |
| REAR_LEFT_PASSENGER_SEAT_BELT           | 54 — ремень заднего левого пассажира пристегнут.                        |
| REAR_RIGHT_PASSENGER_SEAT_BELT          | 55 — ремень заднего правого пассажира пристегнут.                       |
| REAR_CENTER_PASSENGER_SEAT_BELT         | 56 — ремень заднего центрального пассажира пристегнут.                  |
| FRONT_PASSENGER_SEAT_BELT_PRESENT       | 57 — передний пассажирский ремень присутствует.                         |
| ESP_OFF                                 | 58 — ESP выключена.                                                     |
| STOP_LAMP                               | 59 — лампа STOP.                                                        |
| COOLANT_EMERGENCY_LAMP                  | 60 — лампа температуры/уровня воды.                                     |
| BATTERY_LAMP                            | 61 — индикатор отсутствия зарядки АКБ.                                  |
| PARKING_BRAKE_LAMP                      | 62 — индикатор системы стояночного тормоза.                             |
| AIRBAG_LAMP                             | 63 — индикатор подушки безопасности.                                    |
| EPS_FAULT_LAMP                          | 64 — индикатор отказа EPS (электроусилитель руля).                      |
| WARNING_LAMP                            | 65 — индикатор предупреждения.                                          |
| EXTERNAL_LIGHTING_FAULT_LAMP            | 66 — индикатор неисправности внешних световых приборов.                 |
| TYRES_LOW_PRESSURE_LAMP                 | 67 — индикатор низкого давления в шинах.                                |
| BRAKE_PADS_WEAR_LAMP                    | 68 — индикатор износа тормозных колодок.                                |

| LOW_FUEL_LEVEL_LAMP           | 69 — индикатор низкого уровня топлива.                        |
|-------------------------------|---------------------------------------------------------------|
| MAINTENANCE_LAMP              | 70 — индикатор наступления времени технического обслуживания. |
| GLOWPLUG_LAMP                 | 71 — индикатор калильных свечей.                              |
| DPF_LAMP                      | 72 — лампа DPF (сажевый фильтр, FAP).                         |
| EPC_LAMP                      | 73 — индикатор ЕРС (электронный контроль мощности).           |
| ENGINE_OIL_LOW_PRESSURE_LAMP  | 74 — индикатор низкого давления масла в двигателе.            |
| ENGINE_OIL_HIGH_PRESSURE_LAMP | 75 — индикатор низкого давления масла в двигателе.            |
| COOLANT_LOW_LEVEL_LAMP        | 76 — индикатор низкого уровня охлаждающей жидкости.           |
| HYDRO_FILTER_LAMP             | 77 — индикатор засорения фильтра масляной гидросистемы.       |
| HYDRO_OIL_FILTER_LAMP         | 78 — индикатор засорения масляного фильтра гидросистемы.      |
| HYDRO_LOW_PRESSURE_LAMP       | 79 — индикатор низкого давления в гидросистеме.               |
| HYDRO_LOW_LEVEL_LAMP          | 80 — индикатор низкого уровня масла в гидросистеме.           |
| HYDRO_HIGH_TEMPERATURE_LAMP   | 81 — индикатор высокой температуры в гидросистеме.            |
| HYDRO_HIGH_LEVEL_LAMP         | 82 — индикатор перелива масла в баке в гидросистемы.          |
| AIR_FILTER_LAMP               | 83 — индикатор засорения воздушного фильтра.                  |
| FUEL_FILTER_LAMP              | 84 — индикатор засорения топливного фильтра.                  |
| FUEL_WATER_LAMP               | 85 — индикатор присутствия воды в топливе.                    |
| BRAKE_FILTER_LAMP             | 86 — индикатор засорения фильтра тормозной системы.           |
| CATALYST_OVERHEAT_LAMP        | 87 — индикатор перегрева катализатора.                        |
| AGRO_RIGHT_JOYSTICK_RIGHT     | 88 — правый джойстик вправо.                                  |
| AGRO_RIGHT_JOYSTICK_LEFT      | 89 — правый джойстик влево.                                   |
| AGRO_RIGHT_JOYSTICK_PUSH      | 90 — правый джойстик вперед.                                  |
| AGRO_RIGHT_JOYSTICK_PULL      | 91 — правый джойстик назад.                                   |
| AGRO_LEFT_JOYSTICK_RIGHT      | 92 — левый джойстик вправо.                                   |
| AGRO_LEFT_JOYSTICK_LEFT       | 93 — левый джойстик влево.                                    |
| AGRO_LEFT_JOYSTICK_PUSH       | 94 — левый джойстик вперед.                                   |
| AGRO_LEFT_JOYSTICK_PULL       | 95 — левый джойстик назад.                                    |
| AGRO_HYDRO_REAR_1             | 96 — первый задний гидропривод.                               |
| AGRO_HYDRO_REAR_2             | 97 — второй задний гидропривод.                               |
| AGRO_HYDRO_REAR_3             | 98 — третий задний гидропривод.                               |
| AGRO_HYDRO_REAR_4             | 99 — четвертый задний гидропривод.                            |
| AGRO_HYDRO_FRONT_1            | 100 — первый передний гидропривод.                            |
| AGRO_HYDRO_FRONT_2            | 101 — второй передний гидропривод.                            |
| AGRO_HYDRO_FRONT_3            | 102 — третий передний гидропривод.                            |
| AGRO_HYDRO_FRONT_4            | 103 — четвертый передний гидропривод.                         |
| AGRO_THREE_POINT_HITCH_FRONT  | 104 — передняя трехточечная система навески.                  |

| AGRO_FTO_FRONT_SPN_3452  106 — передний механизм отбора мощности. AGRO_FTO_REAR_SPN_3453  107 — задний механизм отбора мощности. AGRO_MOWING  108 — покос. AGRO_THRESHING  109 — молотьба. AGRO_GRAIN_HOPPER_UNLOADING  111 — зерновой бункер заполнен на 100 %. AGRO_GRAIN_HOPPER_TOO_LOAD  112 — зерновой бункер заполнен на 70 %. AGRO_GRAIN_HOPPER_OPEN  133 — зерновой бункер открыт. AGRO_UNLOAD_MECH_ACT_WHEN_TUBE_TAKEN_AWAY  AGRO_LEANING_FAN_CTRL_DISABLED  115 — управление вентилятором очистки отключено. AGRO_THRESHING_DRUM_CTRL_DISABLED  116 — управление молотильным барабаном отключено. 0001 — отключено. AGRO_STRAW_WALKER_FAULT  117 — соломотряс забит. AGRO_THRESHING_DRUM_EXCESS_CLEARANCE  118 — избыточный зазор под молотильным барабаном.  US_SALT_THROWER  119 — распылитель соли (песка).  US_SALT_THROWER_WHEEL_DRIVE  120 — разливка реагентов.  US_SALT_THROWER_WHEEL_DRIVE  121 — конвейерный ремень.  US_SALT_THROWER  122 — привод колеса солеразбрасывателя.  US_WATER_SUPPLY  125 — подача воды.  US_WATER_PUMP  127 — насос подачи жидкости.  US_MATER_PUMP  128 — выгрузка из бункера.  US_SALT_LOW_LEVEL_LAMP  129 — индикатор низкого уровня соли (песка) в баке.                                                                                                                                                                                                           | ACDO TUDES DOINT HITCH DEAD               | 105                                                                |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|--------------------------------------------------------------------|
| AGRO_PTO_REAR_SPN_3453  107 — задний механизм отбора мощности.  AGRO_MOWING  108 — покос.  109 — молотьба.  AGRO_GRAIN_HOPPER_UNLOADING  110 — разгрузка зерна из бункера.  AGRO_GRAIN_HOPPER_TOO_LOAD  111 — зерновой бункер заполнен на 100 %.  AGRO_GRAIN_HOPPER_OLOAD  112 — зерновой бункер заполнен на 70 %.  AGRO_GRAIN_HOPPER_OPEN  113 — зерновой бункер открыт.  AGRO_UNLOAD_MECH_ACT_WHEN_TUBE_TAKEN_AWAY  AGRO_CLEANING_FAN_CTRL_DISABLED  115 — управление вентилятором очистки отключено. 0b01 — отключено.  AGRO_THRESHING_DRUM_CTRL_DISABLED  116 — управление молотильным барабаном отключено.  0001 — отключено.  AGRO_THRESHING_DRUM_EXCESS_CLEARANCE  118 — избыточный зазор под молотильным барабаном.  US_SALT_THROWER  119 — распылитель соли (песка).  US_CONVEYOR_BELT  121 — конвейерный ремень.  US_SALT_THROWER_WHEEL_DRIVE  122 — привод колеса соперазбрасывателя.  US_BRUSH  123 — щетки.  US_VACUUM_CLEANER  124 — пылесос.  US_WATER_PUMP  125 — подача воды.  US_WATER_PUMP  127 — насос подачи жидкости.  US_WATER_PUMP  127 — насос подачи жидкости.  US_SALT_LOW_LEVEL_LAMP  129 — индикатор низкого уровня соли (песка) в баке.                                                                                                                                                                                                                                                  | AGRO_THREE_POINT_HITCH_REAR               | 105 — задняя трехточечная система навески.                         |
| AGRO_MOWING  AGRO_THRESHING  109 — молотьба.  AGRO_GRAIN_HOPPER_UNLOADING  110 — разгрузка зерна из бункера.  AGRO_GRAIN_HOPPER_100_LOAD  111 — зерновой бункер заполнен на 100 %.  AGRO_GRAIN_HOPPER_70_LOAD  112 — зерновой бункер заполнен на 70 %.  AGRO_GRAIN_HOPPER_OPEN  113 — зерновой бункер открыт.  AGRO_UNLOAD_MECH_ACT_WHEN_TUBE_TAKEN_AWAY  AGRO_CLEANING_FAN_CTRL_DISABLED  115 — управление вентилятором очистки отключено. 0b01 — отключено.  AGRO_THRESHING_DRUM_CTRL_DISABLED  116 — управление молотильным барабаном отключено. 0b01 — отключено.  AGRO_THRESHING_DRUM_EXCESS_CLEARANCE  118 — избыточный зазор под молотильным барабаном.  US_SALT_THROWER  119 — распылитель соли (песка).  US_SALT_THROWER  US_SALT_THROWER  120 — разливка реагентов.  US_SALT_THROWER_WHEEL_DRIVE  121 — конвейерный ремень.  US_SALT_THROWER_WHEEL_DRIVE  122 — привод колеса солеразбрасывателя.  US_BRUSH  123 — щетки.  US_WACUUM_CLEANER  124 — пылесос.  US_WASTER_SUPPLY  125 — подача воды.  US_WASTER_PUMP  127 — насос подачи жидкости.  US_WASTER_PUMP  127 — насос подачи жидкости.  US_MATER_PUMP  128 — выгрузка из бункера.  US_SALT_LOW_LEVEL_LAMP  129 — индикатор низкого уровня соли (песка) в баке.                                                                                                                                                                                       |                                           | ·                                                                  |
| AGRO_THRESHING  109 — молотьба.  110 — разгрузка зерна из бункера.  AGRO_GRAIN_HOPPER_100_LOAD  111 — зерновой бункер заполнен на 100 %.  AGRO_GRAIN_HOPPER_70_LOAD  112 — зерновой бункер заполнен на 70 %.  AGRO_GRAIN_HOPPER_OPEN  113 — зерновой бункер открыт.  AGRO_UNLOAD_MECH_ACT_WHEN_TUBE_TAKEN_AWAY  AGRO_CLEANING_FAN_CTRL_DISABLED  115 — управление вентилятором очистки отключено. 0b01 — отключено.  AGRO_THRESHING_DRUM_CTRL_DISABLED  116 — управление молотильным барабаном отключено.  0b01 — отключено.  AGRO_THRESHING_DRUM_EXCESS_CLEARANCE  118 — избыточный зазор под молотильным барабаном.  US_SALT_THROWER  119 — распылитель соли (песка).  US_REAGENTS_POURING  120 — разливка реагентов.  US_SALT_THROWER_WHEEL_DRIVE  121 — конвейерный ремень.  US_SALT_THROWER_WHEEL_DRIVE  122 — привод колеса солеразбрасывателя.  US_SRUSH  123 — щетки.  US_VACUUM_CLEANER  124 — пылесос.  US_WATER_SUPPLY  125 — подача воды.  US_WATER_SUPPLY  126 — моющий аппарат высокого давления.  US_WATER_PUMP  127 — насос подачи жидкости.  US_WATER_PUMP  128 — выгрузка из бункера.  US_SALT_LOW_LEVEL_LAMP  129 — индикатор низкого уровня соли (песка) в баке.                                                                                                                                                                                                                                   | AGRO_PTO_REAR_SPN_3453                    | 107 — задний механизм отбора мощности.                             |
| AGRO_GRAIN_HOPPER_UNLOADING  110 — разгрузка зерна из бункера.  AGRO_GRAIN_HOPPER_100_LOAD  111 — зерновой бункер заполнен на 100 %.  AGRO_GRAIN_HOPPER_70_LOAD  112 — зерновой бункер заполнен на 70 %.  AGRO_GRAIN_HOPPER_OPEN  113 — зерновой бункер открыт.  AGRO_UNLOAD_MECH_ACT_WHEN_TUBE_TAKEN_AWAY  AGRO_UNLOAD_MECH_ACT_WHEN_TUBE_TAKEN_AWAY  AGRO_CLEANING_FAN_CTRL_DISABLED  116 — управление вентилятором очистки отключено. 0b01 — отключено.  AGRO_THRESHING_DRUM_CTRL_DISABLED  116 — управление молотильным барабаном отключено.  0b01 — отключено.  AGRO_THRESHING_DRUM_EXCESS_CLEARANCE  118 — избыточный зазор под молотильным барабаном.  US_SALT_THROWER  119 — распылитель соли (песка).  US_GONYEYOR_BELT  121 — конвейерный ремень.  US_SALT_THROWER_WHEEL_DRIVE  122 — привод колеса солеразбрасывателя.  US_SALT_THROWER_WHEEL_DRIVE  123 — щетки.  US_SRUSH  123 — щетки.  US_VACUUM_CLEANER  124 — пылесос.  US_WATER_SUPPLY  125 — подача воды.  US_WATER_SUPPLY  US_WASHING_MACHINE  126 — моющий аппарат высокого давления.  US_WATER_PUMP  127 — насос подачи жидкости.  US_WATER_PUMP  128 — выгрузка из бункера.  US_SALT_LOW_LEVEL_LAMP  129 — индикатор низкого уровня соли (песка) в баке.                                                                                                                                                                                        | AGRO_MOWING                               | 108 — покос.                                                       |
| AGRO_GRAIN_HOPPER_100_LOAD       111 — зерновой бункер заполнен на 100 %.         AGRO_GRAIN_HOPPER_70_LOAD       112 — зерновой бункер заполнен на 70 %.         AGRO_GRAIN_HOPPER_OPEN       113 — зерновой бункер открыт.         AGRO_UNLOAD_MECH_ACT_WHEN_TUBE_TAKEN_AWAY       114 — привод выгрузного механизма при сложенной выгрузной трубе включен.         AGRO_CLEANING_FAN_CTRL_DISABLED       115 — управление вентилятором очистки отключено. 0b01 — отключено.         AGRO_THRESHING_DRUM_CTRL_DISABLED       116 — управление молотильным барабаном отключено.         AGRO_THRESHING_DRUM_EXCESS_CLEARANCE       118 — избыточный зазор под молотильным барабаном.         US_SALT_THROWER       119 — распылитель соли (песка).         US_REAGENTS_POURING       120 — разливка реагентов.         US_CONVEYOR_BELT       121 — конвейерный ремень.         US_SALT_THROWER_WHEEL_DRIVE       122 — привод колеса солеразбрасывателя.         US_BRUSH       123 — щетки.         US_VACUUM_CLEANER       124 — пылесос.         US_WATER_SUPPLY       125 — подача воды.         US_WATER_SUPPLY       125 — подача воды.         US_WATER_PUMP       127 — насос подачи жидкости.         US_WATER_PUMP       127 — насос подачи жидкости.         US_WATER_UNLOADING       128 — выгружка из бункера.         US_SALT_LOW_LEVEL_LAMP       129 — индикатор низкого уровня соли (песка) в баке. | AGRO_THRESHING                            | 109 — молотьба.                                                    |
| AGRO_GRAIN_HOPPER_70_LOAD  112 — зерновой бункер заполнен на 70 %.  AGRO_GRAIN_HOPPER_OPEN  113 — зерновой бункер открыт.  114 — привод выгрузного механизма при сложенной выгрузной трубе включен.  AGRO_UNLOAD_MECH_ACT_WHEN_TUBE_TAKEN_AWAY  AGRO_CLEANING_FAN_CTRL_DISABLED  115 — управление вентилятором очистки отключено. 0b01 — отключено.  AGRO_THRESHING_DRUM_CTRL_DISABLED  116 — управление молотильным барабаном отключено.  0b01 — отключено.  AGRO_STRAW_WALKER_FAULT  117 — соломотряс забит.  AGRO_THRESHING_DRUM_EXCESS_CLEARANCE  118 — избыточный зазор под молотильным барабаном.  US_SALT_THROWER  119 — распылитель соли (песка).  US_REAGENTS_POURING  120 — разливка реагентов.  US_CONVEYOR_BELT  121 — конвейерный ремень.  US_SALT_THROWER_WHEEL_DRIVE  122 — привод колеса солеразбрасывателя.  US_BRUSH  123 — щетки.  US_VACUUM_CLEANER  124 — пылесос.  US_WATER_SUPPLY  125 — подача воды.  US_WATER_SUPPLY  126 — моющий аппарат высокого давления.  US_WATER_PUMP  127 — насос подачи жидкости.  US_WATER_PUMP  128 — выгрузка из бункера.  US_SALT_LOW_LEVEL_LAMP  129 — индикатор низкого уровня соли (песка) в баке.                                                                                                                                                                                                                                                            | AGRO_GRAIN_HOPPER_UNLOADING               | 110 — разгрузка зерна из бункера.                                  |
| AGRO_GRAIN_HOPPER_OPEN113 — зерновой бункер открыт.AGRO_UNLOAD_MECH_ACT_WHEN_TUBE_TAKEN_AWAY114 — привод выгрузного механизма при сложенной выгрузной трубе включен.AGRO_CLEANING_FAN_CTRL_DISABLED115 — управление вентилятором очистки отключено. 0b01 — отключено.AGRO_THRESHING_DRUM_CTRL_DISABLED116 — управление молотильным барабаном отключено. 0b01 — отключено.AGRO_STRAW_WALKER_FAULT117 — соломотряс забит.AGRO_THRESHING_DRUM_EXCESS_CLEARANCE118 — избыточный зазор под молотильным барабаном.US_SALT_THROWER119 — распылитель соли (песка).US_REAGENTS_POURING120 — разливка реагентов.US_CONVEYOR_BELT121 — конвейерный ремень.US_SALT_THROWER_WHEEL_DRIVE122 — привод колеса солеразбрасывателя.US_BRUSH123 — щетки.US_VACUUM_CLEANER124 — пылесос.US_WATER_SUPPLY125 — подача воды.US_WASHING_MACHINE126 — моющий аппарат высокого давления.US_WATER_PUMP127 — насос подачи жидкости.US_WATER_PUMP127 — насос подачи жидкости.US_HOPPER_UNLOADING128 — выгрузка из бункера.US_SALT_LOW_LEVEL_LAMP129 — индикатор низкого уровня соли (песка) в баке.                                                                                                                                                                                                                                                                                                                                                 | AGRO_GRAIN_HOPPER_100_LOAD                | 111 — зерновой бункер заполнен на 100 %.                           |
| AGRO_UNLOAD_MECH_ACT_WHEN_TUBE_TAKEN_AWAY  AGRO_CLEANING_FAN_CTRL_DISABLED  115 — управление вентилятором очистки отключено. 0b01 — отключено.  AGRO_THRESHING_DRUM_CTRL_DISABLED  116 — управление молотильным барабаном отключено.  0b01 — отключено.  AGRO_STRAW_WALKER_FAULT  117 — соломотряс забит.  AGRO_THRESHING_DRUM_EXCESS_CLEARANCE  118 — избыточный зазор под молотильным барабаном.  US_SALT_THROWER  119 — распылитель соли (песка).  US_REAGENTS_POURING  120 — разливка реагентов.  US_CONVEYOR_BELT  121 — конвейерный ремень.  US_SALT_THROWER_WHEEL_DRIVE  122 — привод колеса солеразбрасывателя.  US_BRUSH  123 — щетки.  US_VACUUM_CLEANER  124 — пылесос.  US_WATER_SUPPLY  125 — подача воды.  US_WASHING_MACHINE  126 — моющий аппарат высокого давления.  US_WATER_PUMP  127 — насос подачи жидкости.  US_HOPPER_UNLOADING  128 — выгрузка из бункера.  US_SALT_LOW_LEVEL_LAMP  129 — индикатор низкого уровня соли (песка) в баке.                                                                                                                                                                                                                                                                                                                                                                                                                                                        | AGRO_GRAIN_HOPPER_70_LOAD                 | 112 — зерновой бункер заполнен на 70 %.                            |
| AGRO_CLEANING_FAN_CTRL_DISABLED       115 — управление вентилятором очистки отключено. 0b01 — отключено.         AGRO_THRESHING_DRUM_CTRL_DISABLED       116 — управление молотильным барабаном отключено. 0b01 — отключено.         AGRO_STRAW_WALKER_FAULT       117 — соломотряс забит.         AGRO_THRESHING_DRUM_EXCESS_CLEARANCE       118 — избыточный зазор под молотильным барабаном.         US_SALT_THROWER       119 — распылитель соли (песка).         US_REAGENTS_POURING       120 — разливка реагентов.         US_CONVEYOR_BELT       121 — конвейерный ремень.         US_SALT_THROWER_WHEEL_DRIVE       122 — привод колеса солеразбрасывателя.         US_BRUSH       123 — щетки.         US_VACUUM_CLEANER       124 — пылесос.         US_WATER_SUPPLY       125 — подача воды.         US_WASHING_MACHINE       126 — моющий аппарат высокого давления.         US_WATER_PUMP       127 — насос подачи жидкости.         US_HOPPER_UNLOADING       128 — выгрузка из бункера.         US_SALT_LOW_LEVEL_LAMP       129 — индикатор низкого уровня соли (песка) в баке.                                                                                                                                                                                                                                                                                                                       | AGRO_GRAIN_HOPPER_OPEN                    | 113 — зерновой бункер открыт.                                      |
| AGRO_THRESHING_DRUM_CTRL_DISABLED       116 — управление молотильным барабаном отключено. 0b01 — отключено.         AGRO_STRAW_WALKER_FAULT       117 — соломотряс забит.         AGRO_THRESHING_DRUM_EXCESS_CLEARANCE       118 — избыточный зазор под молотильным барабаном.         US_SALT_THROWER       119 — распылитель соли (песка).         US_REAGENTS_POURING       120 — разливка реагентов.         US_CONVEYOR_BELT       121 — конвейерный ремень.         US_SALT_THROWER_WHEEL_DRIVE       122 — привод колеса солеразбрасывателя.         US_BRUSH       123 — щетки.         US_VACUUM_CLEANER       124 — пылесос.         US_WATER_SUPPLY       125 — подача воды.         US_WASHING_MACHINE       126 — моющий аппарат высокого давления.         US_WATER_PUMP       127 — насос подачи жидкости.         US_HOPPER_UNLOADING       128 — выгрузка из бункера.         US_SALT_LOW_LEVEL_LAMP       129 — индикатор низкого уровня соли (песка) в баке.                                                                                                                                                                                                                                                                                                                                                                                                                                        | AGRO_UNLOAD_MECH_ACT_WHEN_TUBE_TAKEN_AWAY |                                                                    |
| AGRO_STRAW_WALKER_FAULT       117 — соломотряс забит.         AGRO_STRAW_WALKER_FAULT       118 — избыточный зазор под молотильным барабаном.         US_SALT_THROWER       119 — распылитель соли (песка).         US_REAGENTS_POURING       120 — разливка реагентов.         US_CONVEYOR_BELT       121 — конвейерный ремень.         US_SALT_THROWER_WHEEL_DRIVE       122 — привод колеса солеразбрасывателя.         US_BRUSH       123 — щетки.         US_VACUUM_CLEANER       124 — пылесос.         US_WATER_SUPPLY       125 — подача воды.         US_WASHING_MACHINE       126 — моющий аппарат высокого давления.         US_WATER_PUMP       127 — насос подачи жидкости.         US_HOPPER_UNLOADING       128 — выгрузка из бункера.         US_SALT_LOW_LEVEL_LAMP       129 — индикатор низкого уровня соли (песка) в баке.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | AGRO_CLEANING_FAN_CTRL_DISABLED           | 115 — управление вентилятором очистки отключено. 0b01 — отключено. |
| AGRO_THRESHING_DRUM_EXCESS_CLEARANCE       118 — избыточный зазор под молотильным барабаном.         US_SALT_THROWER       119 — распылитель соли (песка).         US_REAGENTS_POURING       120 — разливка реагентов.         US_CONVEYOR_BELT       121 — конвейерный ремень.         US_SALT_THROWER_WHEEL_DRIVE       122 — привод колеса солеразбрасывателя.         US_BRUSH       123 — щетки.         US_VACUUM_CLEANER       124 — пылесос.         US_WATER_SUPPLY       125 — подача воды.         US_WASHING_MACHINE       126 — моющий аппарат высокого давления.         US_WATER_PUMP       127 — насос подачи жидкости.         US_HOPPER_UNLOADING       128 — выгрузка из бункера.         US_SALT_LOW_LEVEL_LAMP       129 — индикатор низкого уровня соли (песка) в баке.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | AGRO_THRESHING_DRUM_CTRL_DISABLED         | · · ·                                                              |
| US_SALT_THROWER       119 — распылитель соли (песка).         US_REAGENTS_POURING       120 — разливка реагентов.         US_CONVEYOR_BELT       121 — конвейерный ремень.         US_SALT_THROWER_WHEEL_DRIVE       122 — привод колеса солеразбрасывателя.         US_BRUSH       123 — щетки.         US_VACUUM_CLEANER       124 — пылесос.         US_WATER_SUPPLY       125 — подача воды.         US_WASHING_MACHINE       126 — моющий аппарат высокого давления.         US_WATER_PUMP       127 — насос подачи жидкости.         US_HOPPER_UNLOADING       128 — выгрузка из бункера.         US_SALT_LOW_LEVEL_LAMP       129 — индикатор низкого уровня соли (песка) в баке.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | AGRO_STRAW_WALKER_FAULT                   | 117 — соломотряс забит.                                            |
| US_REAGENTS_POURING       120 — разливка реагентов.         US_CONVEYOR_BELT       121 — конвейерный ремень.         US_SALT_THROWER_WHEEL_DRIVE       122 — привод колеса солеразбрасывателя.         US_BRUSH       123 — щетки.         US_VACUUM_CLEANER       124 — пылесос.         US_WATER_SUPPLY       125 — подача воды.         US_WASHING_MACHINE       126 — моющий аппарат высокого давления.         US_WATER_PUMP       127 — насос подачи жидкости.         US_HOPPER_UNLOADING       128 — выгрузка из бункера.         US_SALT_LOW_LEVEL_LAMP       129 — индикатор низкого уровня соли (песка) в баке.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | AGRO_THRESHING_DRUM_EXCESS_CLEARANCE      | 118 — избыточный зазор под молотильным барабаном.                  |
| US_CONVEYOR_BELT       121 — конвейерный ремень.         US_SALT_THROWER_WHEEL_DRIVE       122 — привод колеса солеразбрасывателя.         US_BRUSH       123 — щетки.         US_VACUUM_CLEANER       124 — пылесос.         US_WATER_SUPPLY       125 — подача воды.         US_WASHING_MACHINE       126 — моющий аппарат высокого давления.         US_WATER_PUMP       127 — насос подачи жидкости.         US_HOPPER_UNLOADING       128 — выгрузка из бункера.         US_SALT_LOW_LEVEL_LAMP       129 — индикатор низкого уровня соли (песка) в баке.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | US_SALT_THROWER                           | 119 — распылитель соли (песка).                                    |
| US_SALT_THROWER_WHEEL_DRIVE       122 — привод колеса солеразбрасывателя.         US_BRUSH       123 — щетки.         US_VACUUM_CLEANER       124 — пылесос.         US_WATER_SUPPLY       125 — подача воды.         US_WASHING_MACHINE       126 — моющий аппарат высокого давления.         US_WATER_PUMP       127 — насос подачи жидкости.         US_HOPPER_UNLOADING       128 — выгрузка из бункера.         US_SALT_LOW_LEVEL_LAMP       129 — индикатор низкого уровня соли (песка) в баке.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | US_REAGENTS_POURING                       | 120 — разливка реагентов.                                          |
| US_BRUSH       123 — щетки.         US_VACUUM_CLEANER       124 — пылесос.         US_WATER_SUPPLY       125 — подача воды.         US_WASHING_MACHINE       126 — моющий аппарат высокого давления.         US_WATER_PUMP       127 — насос подачи жидкости.         US_HOPPER_UNLOADING       128 — выгрузка из бункера.         US_SALT_LOW_LEVEL_LAMP       129 — индикатор низкого уровня соли (песка) в баке.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | US_CONVEYOR_BELT                          | 121 — конвейерный ремень.                                          |
| US_VACUUM_CLEANER       124 — пылесос.         US_WATER_SUPPLY       125 — подача воды.         US_WASHING_MACHINE       126 — моющий аппарат высокого давления.         US_WATER_PUMP       127 — насос подачи жидкости.         US_HOPPER_UNLOADING       128 — выгрузка из бункера.         US_SALT_LOW_LEVEL_LAMP       129 — индикатор низкого уровня соли (песка) в баке.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | US_SALT_THROWER_WHEEL_DRIVE               | 122 — привод колеса солеразбрасывателя.                            |
| US_WATER_SUPPLY       125 — подача воды.         US_WASHING_MACHINE       126 — моющий аппарат высокого давления.         US_WATER_PUMP       127 — насос подачи жидкости.         US_HOPPER_UNLOADING       128 — выгрузка из бункера.         US_SALT_LOW_LEVEL_LAMP       129 — индикатор низкого уровня соли (песка) в баке.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | US_BRUSH                                  | 123 — щетки.                                                       |
| US_WASHING_MACHINE       126 — моющий аппарат высокого давления.         US_WATER_PUMP       127 — насос подачи жидкости.         US_HOPPER_UNLOADING       128 — выгрузка из бункера.         US_SALT_LOW_LEVEL_LAMP       129 — индикатор низкого уровня соли (песка) в баке.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | US_VACUUM_CLEANER                         | 124 — пылесос.                                                     |
| US_WATER_PUMP       127 — насос подачи жидкости.         US_HOPPER_UNLOADING       128 — выгрузка из бункера.         US_SALT_LOW_LEVEL_LAMP       129 — индикатор низкого уровня соли (песка) в баке.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | US_WATER_SUPPLY                           | 125 — подача воды.                                                 |
| US_HOPPER_UNLOADING       128 — выгрузка из бункера.         US_SALT_LOW_LEVEL_LAMP       129 — индикатор низкого уровня соли (песка) в баке.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | US_WASHING_MACHINE                        | 126 — моющий аппарат высокого давления.                            |
| US_SALT_LOW_LEVEL_LAMP 129 — индикатор низкого уровня соли (песка) в баке.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | US_WATER_PUMP                             | 127 — насос подачи жидкости.                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | US_HOPPER_UNLOADING                       | 128 — выгрузка из бункера.                                         |
| US_WATER_LOW_LEVEL_LAMP 130 — индикатор низкого уровня воды в баке.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | US_SALT_LOW_LEVEL_LAMP                    | 129 — индикатор низкого уровня соли (песка) в баке.                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | US_WATER_LOW_LEVEL_LAMP                   | 130 — индикатор низкого уровня воды в баке.                        |
| US_REAGENTS_USAGE 131 — использование реагентов.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | US_REAGENTS_USAGE                         | 131 — использование реагентов.                                     |
| US_COMPRESSOR 132 — компрессор.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | US_COMPRESSOR                             | 132 — компрессор.                                                  |
| <b>US_WATER_VALVE</b> 133 — водяной клапан.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | US_WATER_VALVE                            | 133 — водяной клапан.                                              |
| US_CABIN_MOVED_UP 134 — статус «Кабина перемещена вверх».                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | US_CABIN_MOVED_UP                         | 134 — статус «Кабина перемещена вверх».                            |
| US_CABIN_MOVED_DOWN 135 — статус «Кабина перемещена вниз».                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | US_CABIN_MOVED_DOWN                       | 135 — статус «Кабина перемещена вниз».                             |
| <b>EDDP_ACCELERATION</b> 136 — событие качества вождения: резкое ускорение.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | EDDP_ACCELERATION                         | 136 — событие качества вождения: резкое ускорение.                 |
| <b>EDDP_BREAKING</b> 137 — событие качества вождения: резкое торможение.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | EDDP_BREAKING                             | 137 — событие качества вождения: резкое торможение.                |
| <b>EDDP_EXTRBREAKING</b> 138 — событие качества вождения: экстренное торможение.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | EDDP_EXTRBREAKING                         | 138 — событие качества вождения: экстренное торможение.            |
| <b>EDDP_RIGHTTURN</b> 139 — событие качества вождения: резкий поворот направо.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | EDDP_RIGHTTURN                            | 139 — событие качества вождения: резкий поворот направо.           |

| DDP_HOLE       141         DDP_TILT       142         DDP_OVERTURN       143         DDP_RESERVED3       144         DDP_ANY_EVENT       145         DDP_SPEEDPOROG1       146         DDP_SPEEDPOROG2       147         DDP_SPEEDPOROG3       148 | <ul> <li>— событие качества вождения: резкий поворот налево.</li> <li>— событие качества вождения: неровность дороги (яма).</li> <li>— событие качества вождения: опрокидывание.</li> <li>— событие качества вождения: переворот.</li> <li>— зарезервировано качество вождения.</li> <li>— качество вождения: любое событие из контроля ускорений.</li> <li>— превышен порог скорости 1.</li> <li>— превышен порог скорости 2.</li> <li>— превышен порог скорости 3.</li> <li>— признак движения по навигационному приемнику.</li> <li>— признак быстрого движения по навигационному приемнику.</li> </ul> |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DDP_TILT       142         DDP_OVERTURN       143         DDP_RESERVED3       144         DDP_ANY_EVENT       145         DDP_SPEEDPOROG1       146         DDP_SPEEDPOROG2       147         DDP_SPEEDPOROG3       148                            | <ul> <li>— событие качества вождения: опрокидывание.</li> <li>— событие качества вождения: переворот.</li> <li>— зарезервировано качество вождения.</li> <li>— качество вождения: любое событие из контроля ускорений.</li> <li>— превышен порог скорости 1.</li> <li>— превышен порог скорости 2.</li> <li>— превышен порог скорости 3.</li> <li>— признак движения по навигационному приемнику.</li> <li>— признак движения по акселерометру.</li> </ul>                                                                                                                                                 |
| DDP_OVERTURN       143         DDP_RESERVED3       144         DDP_ANY_EVENT       145         DDP_SPEEDPOROG1       146         DDP_SPEEDPOROG2       147         DDP_SPEEDPOROG3       148                                                       | <ul> <li>— событие качества вождения: переворот.</li> <li>— зарезервировано качество вождения.</li> <li>— качество вождения: любое событие из контроля ускорений.</li> <li>— превышен порог скорости 1.</li> <li>— превышен порог скорости 2.</li> <li>— превышен порог скорости 3.</li> <li>— признак движения по навигационному приемнику.</li> <li>— признак движения по акселерометру.</li> </ul>                                                                                                                                                                                                      |
| DDP_RESERVED3 144 DDP_ANY_EVENT 145 DDP_SPEEDPOROG1 146 DDP_SPEEDPOROG2 147 DDP_SPEEDPOROG3 148                                                                                                                                                    | — зарезервировано качество вождения.  — качество вождения: любое событие из контроля ускорений.  — превышен порог скорости 1.  — превышен порог скорости 2.  — превышен порог скорости 3.  — признак движения по навигационному приемнику.  — признак движения по акселерометру.                                                                                                                                                                                                                                                                                                                           |
| DDP_ANY_EVENT 145 DDP_SPEEDPOROG1 146 DDP_SPEEDPOROG2 147 DDP_SPEEDPOROG3 148                                                                                                                                                                      | — качество вождения: любое событие из контроля ускорений.  — превышен порог скорости 1.  — превышен порог скорости 2.  — превышен порог скорости 3.  — признак движения по навигационному приемнику.  — признак движения по акселерометру.                                                                                                                                                                                                                                                                                                                                                                 |
| DDP_SPEEDPOROG1 146 DDP_SPEEDPOROG2 147 DDP_SPEEDPOROG3 148                                                                                                                                                                                        | — превышен порог скорости 1.  — превышен порог скорости 2.  — превышен порог скорости 3.  — признак движения по навигационному приемнику.  — признак движения по акселерометру.                                                                                                                                                                                                                                                                                                                                                                                                                            |
| DDP_SPEEDPOROG2 147 DDP_SPEEDPOROG3 148                                                                                                                                                                                                            | — превышен порог скорости 2.  — превышен порог скорости 3.  — признак движения по навигационному приемнику.  — признак движения по акселерометру.                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| DDP_SPEEDPOROG3 148                                                                                                                                                                                                                                | — превышен порог скорости 3.  — признак движения по навигационному приемнику.  — признак движения по акселерометру.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                    | — признак движения по навигационному приемнику. — признак движения по акселерометру.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| OT_MOTION_FROM_NAV 149                                                                                                                                                                                                                             | — признак движения по акселерометру.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| OT_MOTION_FROM_ACCEL 150                                                                                                                                                                                                                           | — признак быстрого движения по навигационному приемнику                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| OT_FAST_MOTION_FROM_NAV 151                                                                                                                                                                                                                        | inproduct object por a gorancina no nabanagao into interioring inprecisionny.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| N TIIRRENI ZIVIEI                                                                                                                                                                                                                                  | — текущее состояние подключения к серверу 1<br>. ServerConnectionStatus).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| NY (TIRRENT YIATE)                                                                                                                                                                                                                                 | — текущее состояние подключения к серверу 2<br>. ServerConnectionStatus).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| NY TIIRRENT YIATES                                                                                                                                                                                                                                 | — текущее состояние подключения к серверу 3<br>. ServerConnectionStatus).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                    | — максимальное состояние подключения к серверу 1<br>. ServerConnectionStatus).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| N MAX SIAIF/                                                                                                                                                                                                                                       | — максимальное состояние подключения к серверу 2<br>. ServerConnectionStatus).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| N MAX SIAIFS                                                                                                                                                                                                                                       | — максимальное состояние подключения к серверу 3<br>. ServerConnectionStatus).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| <b>(AM_1_OUT_1</b> 158                                                                                                                                                                                                                             | — состояние выхода 1 ДУН 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (AM_1_OUT_2 159                                                                                                                                                                                                                                    | — состояние выхода 2 ДУН 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <b>KAM_2_OUT_1</b> 160                                                                                                                                                                                                                             | — состояние выхода 1 ДУН 2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <b>KAM_2_OUT_2</b> 161                                                                                                                                                                                                                             | — состояние выхода 2 ДУН 2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (AM_3_OUT_1 162                                                                                                                                                                                                                                    | — состояние выхода 1 ДУН 3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (AM_3_OUT_2 163                                                                                                                                                                                                                                    | — состояние выхода 2 ДУН 3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <b>(AM_4_OUT_1</b> 164                                                                                                                                                                                                                             | — состояние выхода 1 ДУН 4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (AM_4_OUT_2 165                                                                                                                                                                                                                                    | — состояние выхода 2 ДУН 4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (AM_5_OUT_1 166                                                                                                                                                                                                                                    | — состояние выхода 1 ДУН 5.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <b>(AM_5_OUT_2</b> 167                                                                                                                                                                                                                             | — состояние выхода 2 ДУН 5.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| KAM_6_OUT_1 168                                                                                                                                                                                                                                    | — состояние выхода 1 ДУН 6.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (AM_6_OUT_2 169                                                                                                                                                                                                                                    | — состояние выхода 2 ДУН 6.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <b>(AM_7_OUT_1</b> 170                                                                                                                                                                                                                             | — состояние выхода 1 ДУН 7.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| KAM_7_OUT_2 171                                                                                                                                                                                                                                    | — состояние выхода 2 ДУН 7.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| TKAM_8_OUT_1               | 172 — состояние выхода 1 ДУН 8.                                                 |
|----------------------------|---------------------------------------------------------------------------------|
| TKAM_8_OUT_2               | 173 — состояние выхода 2 ДУН 8.                                                 |
| TKAM_9_0UT_1               | 174 — состояние выхода 1 ДУН 9.                                                 |
| TKAM_9_OUT_2               | 175 — состояние выхода 2 ДУН 9.                                                 |
| TKAM_10_0UT_1              | 176 — состояние выхода 1 ДУН 10.                                                |
| TKAM_10_0UT_2              | 177 — состояние выхода 2 ДУН 10.                                                |
| TKAM_11_0UT_1              | 178 — состояние выхода 1 ДУН 11.                                                |
| TKAM_11_0UT_2              | 179 — состояние выхода 2 ДУН 11.                                                |
| TKAM_12_0UT_1              | 180 — состояние выхода 1 ДУН 12.                                                |
| TKAM_12_0UT_2              | 181 — состояние выхода 2 ДУН 12.                                                |
| TKAM_13_0UT_1              | 182 — состояние выхода 1 ДУН 13.                                                |
| TKAM_13_0UT_2              | 183 — состояние выхода 2 ДУН 13.                                                |
| TKAM_14_OUT_1              | 184 — состояние выхода 1 ДУН 14.                                                |
| TKAM_14_OUT_2              | 185 — состояние выхода 2 ДУН 14.                                                |
| TKAM_15_0UT_1              | 186 — состояние выхода 1 ДУН 15.                                                |
| TKAM_15_OUT_2              | 187 — состояние выхода 2 ДУН 15.                                                |
| TKAM_16_OUT_1              | 188 — состояние выхода 1 ДУН 16.                                                |
| TKAM_16_OUT_2              | 189 — состояние выхода 2 ДУН 16.                                                |
| NAV_COORDS_VALID           | 190 — прием координат достоверен.                                               |
| ID_IBUTTON                 | 191 — считан идентификатор по iButton.                                          |
| ID_BLE                     | 192 — считан идентификатор по BLE.                                              |
| ID_CAN                     | 193 — считан идентификатор по CAN.                                              |
| ID_MODBUS                  | 194 — считан идентификатор по MODBUS.                                           |
| POSITION_OF_DOORS_SPN_1821 | 195 — положение дверей.                                                         |
| RAMP_POSITION_SPN_1820     | 196 — рампа/лифт для коляски.                                                   |
| STATUS_2_OF_DOORS_SPN_3411 | 197 — статус дверей.                                                            |
| CURRENT_GEAR_SPN_523       | 198 — текущая передача.                                                         |
| FUEL_TYPE_SPN_5837         | 199 — используемое топливо.                                                     |
| OUTPUT_OK_STATE_1          | 200 — состояние выхода 1.                                                       |
| OUTPUT_OK_STATE_2          | 201 — состояние выхода 2.                                                       |
| OUTPUT_OK_STATE_3          | 202 — состояние выхода 3.                                                       |
| TKAM_1_EVENT_STATE         | 203 — состояние сработки события ДУН 1.                                         |
| TKAM_2_EVENT_STATE         | 204 — состояние сработки события ДУН 2.                                         |
| TKAM_3_EVENT_STATE         | 205 — состояние сработки события ДУН 3.                                         |
| I                          | ''                                                                              |
| TKAM_4_EVENT_STATE         | 206 — состояние сработки события ДУН 4. 207 — состояние сработки события ДУН 5. |

| TKAM_6_EVENT_STATE     | 208 — состояние сработки события ДУН 6.                               |
|------------------------|-----------------------------------------------------------------------|
|                        |                                                                       |
| TKAM_7_EVENT_STATE     | 209 — состояние сработки события ДУН 7.                               |
| TKAM_8_EVENT_STATE     | 210 — состояние сработки события ДУН 8.                               |
| TKAM_9_EVENT_STATE     | 211 — состояние сработки события ДУН 9.                               |
| TKAM_10_EVENT_STATE    | 212 — состояние сработки события ДУН 10.                              |
| TKAM_11_EVENT_STATE    | 213 — состояние сработки события ДУН 11.                              |
| TKAM_12_EVENT_STATE    | 214 — состояние сработки события ДУН 12.                              |
| TKAM_13_EVENT_STATE    | 215 — состояние сработки события ДУН 13.                              |
| TKAM_14_EVENT_STATE    | 216 — состояние сработки события ДУН 14.                              |
| TKAM_15_EVENT_STATE    | 217 — состояние сработки события ДУН 15.                              |
| TKAM_16_EVENT_STATE    | 218 — состояние сработки события ДУН 16.                              |
| CAMERA_EVENT_STATE     | 219 — события камеры.                                                 |
| UWB_ANCHOR_DANGER_ZONE | 220 — тег находится в опасной зоне (см. DangerZoneType).              |
| MOT_STOP_FROM_NAV      | 221 — признак остановки по навигационному приемнику.                  |
| INT_BAT_CHARGING       | 222 — признак зарядки внутренней батареи.                             |
| LLS_1_ERRORS           | 223 — ошибки ДУТ 1.                                                   |
| LLS_2_ERRORS           | 224 — ошибки ДУТ 2.                                                   |
| LLS_3_ERRORS           | 225 — ошибки ДУТ 3.                                                   |
| LLS_4_ERRORS           | 226 — ошибки ДУТ 4.                                                   |
| LLS_5_ERRORS           | 227 — ошибки ДУТ 5.                                                   |
| LLS_6_ERRORS           | 228 — ошибки ДУТ 6.                                                   |
| LLS_7_ERRORS           | 229 — ошибки ДУТ 7.                                                   |
| LLS_8_ERRORS           | 230 — ошибки ДУТ 8.                                                   |
| TKAM_1_ROLL_CNTR       | 231 — количество оборотов, сделанное датчиком угла наклона (ТКАМ) 1.  |
| TKAM_2_ROLL_CNTR       | 232 — количество оборотов, сделанное датчиком угла наклона (ТКАМ) 2.  |
| TKAM_3_ROLL_CNTR       | 233 — количество оборотов, сделанное датчиком угла наклона (ТКАМ) 3.  |
| TKAM_4_ROLL_CNTR       | 234 — количество оборотов, сделанное датчиком угла наклона (ТКАМ) 4.  |
| TKAM_5_ROLL_CNTR       | 235 — количество оборотов, сделанное датчиком угла наклона (ТКАМ) 5.  |
| TKAM_6_ROLL_CNTR       | 236 — количество оборотов, сделанное датчиком угла наклона (ТКАМ) 6.  |
| TKAM_7_ROLL_CNTR       | 237 — количество оборотов, сделанное датчиком угла наклона (ТКАМ) 7.  |
| TKAM_8_ROLL_CNTR       | 238 — количество оборотов, сделанное датчиком угла наклона (ТКАМ) 8.  |
| TKAM_9_ROLL_CNTR       | 239 — количество оборотов, сделанное датчиком угла наклона (ТКАМ) 9.  |
| TKAM_10_ROLL_CNTR      | 240 — количество оборотов, сделанное датчиком угла наклона (ТКАМ) 10. |
| TKAM_11_ROLL_CNTR      | 241 — количество оборотов, сделанное датчиком угла наклона (ТКАМ) 11. |
| TKAM_12_ROLL_CNTR      | 242 — количество оборотов, сделанное датчиком угла наклона (ТКАМ) 12. |
| TKAM_13_ROLL_CNTR      | 243 — количество оборотов, сделанное датчиком угла наклона (ТКАМ) 13. |
|                        |                                                                       |

| TKAM_14_ROLL_CNTR | 244 — количество оборотов, сделанное датчиком угла наклона (ТКАМ) 14. |
|-------------------|-----------------------------------------------------------------------|
| TKAM_15_ROLL_CNTR | 245 — количество оборотов, сделанное датчиком угла наклона (ТКАМ) 15. |
| TKAM_16_ROLL_CNTR | 246 — количество оборотов, сделанное датчиком угла наклона (ТКАМ) 16. |

# AdaptiveLevelEvent\_doc

События адаптива уровневого параметра.

| ADD_LEVEL_EVENT_BAND_CHANGED_TO_LOW = 0    | 0 — уровень снизился ниже нижнего порога.                   |
|--------------------------------------------|-------------------------------------------------------------|
| ADD_LEVEL_EVENT_BAND_CHANGED_TO_NORMAL = 1 | 1 — уровень установился в нормальном диапазоне.             |
| ADD_LEVEL_EVENT_BAND_CHANGED_TO_HIGH = 2   | 2 — уровень превысил верхний порог.                         |
| ADD_LEVEL_EVENT_ADAPTIVE = 3               | 3 — изменение на значение, превышающее установленный порог. |

# AdaptiveLevelEventFlags\_doc

Флаги событий адаптива уровневого параметра.

Значения используются в командах ADAPTIVE и ADAPTIVECONTROL. В описании дана расшифровка значений в виде «значения для команды ADAPTIVE / значения для команды ADAPTIVECONTROL».

| AD_LEVEL_EVENT_FLAG_LOW_BAND = 0x1  | 0x1 — отслеживание нижней границы / значение параметра находится в нижнем диапазоне.                                              |
|-------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| AD_LEVEL_EVENT_FLAG_HIGH_BAND = 0x2 | 0x2 — отслеживание верхней границы / значение параметра находится в верхнем диапазоне.                                            |
| AD_LEVEL_EVENT_FLAG_ADAPTIVE = 0x4  | 0х4 — отслеживание адаптива (скорости изменения параметра) / событие адаптива происходило с момента предыдущего запроса.          |
| AD_LEVEL_EVENT_FLAG_PEAK = 0x8      | 0x8 — отслеживание пиков / событие обнаружения пика происходило с момента предыдущего запроса — НА ДАННЫЙ МОМЕНТ НЕ ИСПОЛЬЗУЕТСЯ. |

# AdaptiveDiscreteEvent\_doc

События адаптива дискретного параметра.

| ADD_DISCR_EVENT_STATE_CHANGED = 0x10 | 16 — отслеживаемые биты состояния изменились.            |
|--------------------------------------|----------------------------------------------------------|
| ADD_DISCR_EVENT_STATE_NOT_MATCHED    | 17 — отслеживаемые биты перестали совпадать с заданными. |
| ADD_DISCR_EVENT_STATE_MATCHED        | 18 — отслеживаемые биты совпали с заданными.             |

# ${\bf Adaptive Discrete Event Flags\_doc}$

Флаги событий адаптива дискретного параметра.

Значения используются в командах ADAPTIVE и ADAPTIVECONTROL. В описании дана расшифровка значений в виде «значения для команды ADAPTIVE / значения для команды ADAPTIVECONTROL».

| AD_DISCRETE_EVENT_FLAG_STATE_CHANGED = 0x1 | 0x1 — отслеживание изменения заданных битов состояния / событие изменения заданных битов состояния происходило с момента предыдущего запроса. |
|--------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| AD_DISCRETE_EVENT_FLAG_STATE_MATCHES = 0x2 | 0x2 — отслеживание совпадения заданных битов состояния / значение заданных битов состояния соответствует требуемым.                           |

# Серверы

| Список команд                                   | Описание                                                |
|-------------------------------------------------|---------------------------------------------------------|
| PASSWORD                                        | Смена пароля контроллера для доступа на сервер.         |
| SRVxMAINIP, IP, PARALLELIP                      | Назначение IP-адреса и порта основного канала сервера.  |
| SRVxRESIP                                       | Назначение IP-адреса и порта резервного канала сервера. |
| SRVxMAINPORT, PORT, PARALLELPORT                | Назначение порта основного канала сервера.              |
| SRVxRESPORT                                     | Назначение порта резервного канала сервера.             |
| SRVxMAINDOMAIN, MAINDOMAIN,<br>PARALLELDOMAIN   | Указание доменного имени основного канала сервера.      |
| SRVxRESDOMAIN                                   | Указание доменного имени резервного канала сервера.     |
| SRVxTRANSPORT, MAINTRANSPORT, PARALLELTRANSPORT | Указание протокола сервера.                             |
| SRVxCOMMAND                                     | Установка разрешения на обработку команд с сервера.     |
| SRVSTATUSLED                                    | Выбор сервера для индикации светодиодом STATUS1.        |
| SRVxSTATUS                                      | Запрос статуса подключения к серверу.                   |
| SRVxDISCONNECT                                  | Разрыв соединения с сервером.                           |
| DATASEND                                        | Запуск внеочередной отправки на сервер.                 |
| EXTAGHIPMODEM                                   | Передача данных на внешний модем по шине RS-485.        |
| CONFREQUEST                                     | Запрос передачи конфигурации контроллера на сервер.     |
| SRVSUPPORTEDTRANSPORT                           | Запрос поддерживаемых серверных протоколов.             |

| Список групп параметров | Описание                                            |
|-------------------------|-----------------------------------------------------|
| ServerTransportProtocol | Типы протоколов, используемые в текстовых командах. |
| ServerConnectionStatus  | Статус подключения к серверу.                       |

#### **PASSWORD**

Смена пароля контроллера для доступа на сервер.

- Доступна через сервер и SMS.
- Версия прошивки: 01.02-а4 и выше.
- Команда запроса: —

#### Формат команды:

PASSWORD=new\_password;

### Параметры:

| new_password Новый восьмизначный пароль контроллера. Пароль может содержать только бу латинского алфавита и цифры (09). |
|-------------------------------------------------------------------------------------------------------------------------|
|-------------------------------------------------------------------------------------------------------------------------|

#### Пример команды:

PASSWORD=1234asdf;

#### Пример ответа:

PASSWORD=1234asdf;

**Примечание.** После смены пароля контроллера следует обязательно удалить с сервера файл password.txt, который расположен в папке с данными настраиваемого контроллера. После удаления этого файла на сервере будет автоматически создан новый файл password.txt, содержащий новый пароль контроллера. Если старый файл password.txt, содержащий старый пароль, не будет удален, то контроллер не сможет передавать данные на сервер.

# **SRVxMAINIP, IP, PARALLELIP**

Назначение ІР-адреса и порта основного канала сервера.

- Доступна через сервер и SMS.
- Версия прошивки: 01.02-а4 и выше.
- Команды запроса: GIP, GPARALLELIP, GSRVxMAINIP.

### Формат команды:

- IP=ip:port; для сервера 1.
- PARALLELIP=ip:port; для сервера 2.
- SRVxMAINIP=ip:port;

### Параметры:

| х    | Номер сервера (1, 2 или 3).                                                                    |
|------|------------------------------------------------------------------------------------------------|
| ip   | IP-адрес сервера в формате 255.255.255.                                                        |
| port | Порт сервера. Параметр port может не указываться. В этом случае будет изменен только IP-адрес. |

**Примечание.** Команды IP и PARALLELIP оставлены для совместимости с бортовыми контроллерами АвтоГРАФ предыдущих версий.

### Примеры команды:

IP=225.225.225.225:65535; SRV2MAINIP=8.8.8.8:2225;

### Примеры ответа:

IP=225.225.225.225:65535; SRV2MAINIP=8.8.8.8:2225;

### **SRVxRESIP**

Назначение ІР-адреса и порта резервного канала сервера.

- Доступна через сервер и SMS.
- Версия прошивки: 01.02-а4 и выше.
- Команда запроса: GSRVxRESIP.

# Формат команды:

SRVxRESIP=ip:port;

### Параметры:

| х    | Номер сервера (1, 2 или 3).                                                                    |
|------|------------------------------------------------------------------------------------------------|
| ip   | IP-адрес сервера в формате 255.255.255.                                                        |
| port | Порт сервера. Параметр port может не указываться. В этом случае будет изменен только IP-адрес. |

# Пример команды:

SRV2RESIP=9.9.9.9:2225;

# Пример ответа:

SRV2RESIP=9.9.9.9:2225;

# SRVxMAINPORT, PORT, PARALLELPORT

Назначение порта основного канала сервера.

- Доступна через сервер и SMS.
- Версия прошивки: 01.02-а4 и выше.
- Команды запроса: GSRVxMAINPORT, GPORT, GPARALLELPORT.

#### Формат команды:

- PORT=port; для сервера 1.
- PARALLELPORT=port; для сервера 2.
- SRVxMAINPORT=port;

### Параметры:

| х    | Номер сервера (1, 2 или 3). |
|------|-----------------------------|
| port | Порт сервера.               |

**Примечание.** Команды PORT и PARALLELPORT оставлены для совместимости с бортовыми контроллерами АвтоГРАФ предыдущих версий.

### Пример команды:

SRV1MAINPORT=2225;

### Пример ответа:

SRV1MAINPORT=2225;

### **SRVxRESPORT**

Назначение порта резервного канала сервера.

- Доступна через сервер и SMS.
- Версия прошивки: 01.02-а4 и выше.
- Команда запроса: GSRVxRESPORT.

# Формат команды:

SRVxRESPORT=port;

### Параметры:

| х    | Номер сервера (1, 2 или 3). |
|------|-----------------------------|
| port | Порт сервера.               |

### Пример команды:

SRV1RESPORT=2226;

# Пример ответа:

SRV1RESPORT=2226;

# SRVxMAINDOMAIN, MAINDOMAIN, PARALLELDOMAIN

Указание доменного имени основного канала сервера.

- Доступна через сервер и SMS.
- Версия прошивки: 01.02-а4 и выше.
- Команды запроса: GSRVxMAINDOMAIN, GMAINDOMAIN, GPARALLELDOMAIN.

#### Формат команды:

- MAINDOMAIN=domain:port; для сервера 1.
- PARALLELDOMAIN=domain:port; для сервера 2.
- SRVxMAINDOMAIN=domain:port;

#### Параметры:

| х Номер сервера (1, 2 или 3). | Номер сервера (1, 2 или 3).                                                                                                   |
|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| domain                        | Доменное имя (до 128 символов).                                                                                               |
| port                          | Порт сервера. Параметр может не указываться (например, MAINDOMAIN=domain;). В этом случае будет изменено только доменное имя. |

**Примечание.** Команды MAINDOMAIN и PARALLELDOMAIN оставлены для совместимости с бортовыми контроллерами АвтоГРАФ предыдущих версий. Они также поддерживаются контроллерами АвтоГРАФ-Mobile X.

### Пример команды:

SRV1MAINDOMAIN=office.tk-chel.ru:2225;

#### Пример ответа:

SRV1MAINDOMAIN=office.tk-chel.ru:2225;

### **SRVxRESDOMAIN**

Указание доменного имени резервного канала сервера.

- Доступна через сервер и SMS.
- Версия прошивки: 01.02-а4 и выше.
- Команда запроса: GSRVxRESDOMAIN.

# Формат команды:

SRVxRESDOMAIN=domain:port;

### Параметры:

| х                                 | Номер сервера (1, 2 или 3).                                                                    |
|-----------------------------------|------------------------------------------------------------------------------------------------|
| domain Доменное имя (до 128 симво | Доменное имя (до 128 символов).                                                                |
| port                              | Порт сервера. Параметр port может не указываться. В этом случае будет изменен только IP-адрес. |

# Пример команды:

SRV1RESDOMAIN=ag2.tk-chel.ru:2225;

# Пример ответа:

SRV1RESDOMAIN=ag2.tk-chel.ru:2225;

# SRVxTRANSPORT, MAINTRANSPORT, PARALLELTRANSPORT

Указание протокола сервера.

- Доступна через сервер и SMS.
- Версия прошивки: 01.02-а4 и выше.
- Команды запроса: GSRVxTRANSPORT, GMAINTRANSPORT, GPARALLELTRANSPORT.

#### Формат команды:

- MAINTRANSPORT=transport; для сервера 1.
- PARALLELTRANSPORT=transport; для сервера 2.
- SRVxTRANSPORT=transport;

### Параметры:

| х         | Номер сервера (1, 2 или 3).             |
|-----------|-----------------------------------------|
| transport | Протокол (см. ServerTransportProtocol). |

**Примечание.** Команды MAINTRANSPORT и PARALLELTRANSPORT оставлены для совместимости с бортовыми контроллерами АвтоГРАФ предыдущих версий.

### Пример команды:

SRV1TRANSPORT=2;

### Пример ответа:

SRV1TRANSPORT=2;

### **SRVxCOMMAND**

Установка разрешения на обработку команд с сервера.

- Доступна через сервер и SMS.
- Версия прошивки: 01.02-а4 и выше.
- Команда запроса: GSRVxCOMMAND.

# Формат команды:

SRVxCOMMAND=permit;

# Параметры:

| х      | Номер сервера (1, 2 или 3).                                                                       |
|--------|---------------------------------------------------------------------------------------------------|
| permit | Разрешение на обработку команд с сервера:  • 1 — обработка разрешена;  • 0 — обработка запрещена. |

# Пример команды:

SRV1COMMAND=1;

# Пример ответа:

SRV1COMMAND=1;

### **SRVSTATUSLED**

Выбор сервера для индикации светодиодом STATUS1.

- Доступна через сервер и SMS.
- Версия прошивки: 13.19 и выше.
- Команда запроса: GSRVSTATUSLED.

# Формат команды:

SRVSTATUSLED=server;

### Параметры:

| server | Номер сервера (1, 2 или 3). Выбирает сервер, состояние подключения к которому |
|--------|-------------------------------------------------------------------------------|
|        | будет индицировать светодиод STATUS1 (при наличии).                           |

# Пример команды:

SRVSTATUSLED=1;

# Пример ответа:

SRVSTATUSLED=1;

### **SRVxSTATUS**

Запрос статуса подключения к серверу.

- Доступна через сервер и SMS.
- Версия прошивки: 01.02-а4 и выше.
- Команда запроса: GSRVxSTATUS.

# Формат ответа:

SRVxSTATUS=current,max,channel,media;

# Параметры:

| х       | Номер сервера (1, 2 или 3).                                                                                                |
|---------|----------------------------------------------------------------------------------------------------------------------------|
| current | Текущий статус подключения к серверу (см. ServerConnectionStatus).                                                         |
| max     | Максимальный статус подключения к серверу (см. ServerConnectionStatus).                                                    |
| channel | Канал передачи: • 0 — основной; • 1 — резервный.                                                                           |
| media   | Средство подключения: • 0 — не определено; • 1 — GSM модем 1; • 2 — Wi-Fi; • 4 — GSM модем 2 (для устройств АвтоГРАФ-АСН). |

# Пример команды:

GSRV1STATUS;

# Пример ответа:

SRV1STATUS=3,5,5,0,1;

### **SRVxDISCONNECT**

Разрыв соединения с сервером.

- Доступна через сервер и SMS.
- Версия прошивки: 01.02-а4 и выше.
- Команда запроса: —

# Формат команды:

SRVxDISCONNECT;

# Параметры:

| x | Номер сервера (1, 2 или 3). |
|---|-----------------------------|

**Примечание.** В ответ на команду контроллер всегда возвращает 1 (резервный параметр).

# Пример команды:

SRV2DISCONNECT;

# Пример ответа:

SRV2DISCONNECT=1;

### **DATASEND**

Запуск внеочередной отправки на сервер.

- Доступна через сервер и SMS.
- Версия прошивки: 01.02-а4 и выше.
- Команда запроса: —

# Формат команды:

DATASEND=x;

# Параметры:

# Пример команды:

DATASEND=1;

# Пример ответа:

DATASEND=1;

#### **EXTAGHIPMODEM**

Передача данных на внешний модем по шине RS-485.

- Доступна через сервер и SMS.
- Версия прошивки: 13.23 и выше.
- Команда запроса: GEXTAGHIPMODEM.

### Формат команды:

EXTAGHIPMODEM=m;

#### Параметры:

|   | Режим передачи данных на внешний модем: |
|---|-----------------------------------------|
| m | • 0 — передача отключена;               |
|   | • 1 — передача включена.                |

#### Пример команды:

EXTAGHIPMODEM=1;

### Пример ответа:

EXTAGHIPMODEM=1;

**Примечание.** Передача данных идет через тот интерфейс RS-485, который выбран опцией «Вести опрос устройств ТК» (или командой EXTAGHIPSRC).

Для передачи данных на внешний модем задействуется интерфейс третьего сервера. Одновременная передача данных на третий сервер и на внешний модем невозможна.

# **CONFREQUEST**

Запрос передачи конфигурации контроллера на сервер.

- Доступна через сервер и SMS.
- Версия прошивки: 01.02-а4 и выше.
- Команда запроса: —

# Формат команды:

CONFREQUEST=x;

# Параметры:

|                | Номер сервера (1, 2 или 3). В случае отправки команды без номера сервера (CONFREQUEST; или CONFREQUEST=;) передача конфигурации будет инициирована      |
|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| l <sub>x</sub> | на всех настроенных серверах.<br>Если команда отправляется через сервер с $\mathbf{x} = 0$ , то передача конфигурации будет                             |
|                | инициирована для сервера, с которого получена команда.<br>Если команда отправляется не через сервер (SMS, USB и т. д.) с $\mathbf{x} = 0$ , то передача |
|                | конфигурации будет инициирована на всех настроенных серверах.                                                                                           |

# Пример команды:

CONFREQUEST=1;

# Пример ответа:

CONFREQUEST=1;

#### **SRVSUPPORTEDTRANSPORT**

Запрос поддерживаемых серверных протоколов.

- Доступна через сервер и SMS.
- Версия прошивки: 13.34 и выше.
- Команда запроса: GSRVSUPPORTEDTRANSPORT. Команды SRVSUPPORTEDTRANSPORT и GSRVSUPPORTEDTRANSPORT работают одинаково, только на запрос.

# Формат команды:

SRVSUPPORTEDTRANSPORT;

### Формат ответа:

SRVSUPPORTEDTRANSPORT=transport;

### Параметры:

| transport | <ul> <li>Набор поддерживаемых протоколов, битовое поле в НЕХ:</li> <li>01 — АвтоГРАФ (ограниченный) — закрытый протокол АвтоГРАФ для передачи данных на сервер АвтоГРАФ.</li> <li>02 — EGTS (ЭРА-ГЛОНАСС) — протокол для передачи данных на сервер МинТранса (согласно приказу 285).</li> <li>04 — ТК.Monitoring (хостинг) — закрытый протокол АвтоГРАФ для передачи данных на сервер ТКmonitoring.com.</li> <li>08 — AGTP (основной проприетарный) — закрытый протокол передачи данных на сервер АвтоГРАФ, обеспечивающий передачу на высоких скоростях (по сравнению с протоколом АвтоГРАФ). Протокол АGTP поддерживается ПО «АвтоГРАФ.Сервер» версии 5.0 и выше.</li> <li>10 — AGPP (Public Protocol) — открытый протокол АвтоГРАФ.</li> <li>20 — Wialon IPS v2.1.</li> </ul> |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

#### Пример команды:

GSRVSUPPORTEDTRANSPORT;

### Пример ответа:

SRVSUPPORTEDTRANSPORT=C;

# ${\bf Server Transport Protocol}$

Типы протоколов, используемые в текстовых командах.

| STP_AUTOGRAPH = 0      | 0 — АвтоГРАФ (ограниченный) — закрытый протокол АвтоГРАФ для передачи данных на сервер АвтоГРАФ.                                                                                                                                                  |
|------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| STP_MINSTRANS = 1      | 1 — EGTS (ЭРА-ГЛОНАСС) — протокол для передачи данных на сервер МинТранса (согласно приказу 285).                                                                                                                                                 |
| STP_TKMONITORING = 2   | 2 — ТК.Monitoring (хостинг) — закрытый протокол АвтоГРАФ для передачи данных на сервер TKmonitoring.com.                                                                                                                                          |
| STP_AGTP = 3           | 3 — AGTP (основной проприетарный) — закрытый протокол передачи данных на сервер АвтоГРАФ, обеспечивающий передачу на высоких скоростях (по сравнению с протоколом АвтоГРАФ). Протокол AGTP поддерживается ПО «АвтоГРАФ.Сервер» версии 5.0 и выше. |
| STP_AGOPEN = 4         | 4 — AGPP (Public Protocol) — открытый протокол АвтоГРАФ.                                                                                                                                                                                          |
| STP_WIALON_IPS_2_1 = 5 | 5 — Wialon IPS v2.1.                                                                                                                                                                                                                              |

# ServerConnectionStatus

Статус подключения к серверу.

| SCS_BEGINNING = 0                   | 0 — начальное состояние подключения.                                                      |
|-------------------------------------|-------------------------------------------------------------------------------------------|
| SCS_CLOSED = 1                      | 1 — соединение закрыто.                                                                   |
| SCS_CONNECTING = 2                  | 2 — попытка подключения.                                                                  |
| SCS_CONNECTED = 3                   | 3 — соединение установлено.                                                               |
| SCS_DATA_SENT = 4                   | 4 — данные на сервер отправлены.                                                          |
| SCS_ANSWER_OK = 5                   | 5 — успешная передача данных на сервер.                                                   |
| SCS_ERROR_PASSWORD = 100            | 100 — пароль на сервере и контроллере не совпадает.                                       |
| SCS_ERROR_NOT_SERVICED = 101        | 101 — контроллер не обслуживается на сервере.                                             |
| SCS_ERROR_WRONG_CONFIGURATION = 102 | 102 — некорректная конфигурация сервера.                                                  |
| SCS_ERROR_WRONG_CHANNEL = 103       | 103 — передача данных по неправильному каналу.                                            |
| SCS_ERROR_WRONG_PROTOCOL = 104      | 104 — протокол АвтоГРАФ (legacy) недоступен для комбинации данного сервера и контроллера. |

# Настройки EGTS (Минтранс)

| Список команд     | Описание                                                                                                                        |
|-------------------|---------------------------------------------------------------------------------------------------------------------------------|
| TID               | Указание идентификатора контроллера (terminal ID).                                                                              |
| VEHICLE_VHT       | Указание VHT — типа транспортного средства.                                                                                     |
| VEHICLE_VPST      | Указание VPST — типа энергоносителя транспортного средства.                                                                     |
| VEHICLE_VIN       | Установка VIN (Vehicle Identification Number) для передачи данных в протоколе EGTS.                                             |
| ALARMINPUT=0      | Отключение тревожной кнопки контроллера (см. ALARMINPUT).                                                                       |
| ALARMSTATE=0      | Установка для состояния входа контроллера, при котором тревожная кнопка считается нажатой, значения 0 (см. <u>ALARMSTATE</u> ). |
| INPUTPULLx=U      | Подтяжка к «+» универсального входа <b>х</b> (см. INPUTPULLx).                                                                  |
| INPUTMODExx=A     | Установка для входа <b>хх</b> режима работы «Обычный вход» (см. INPUTMODExx).                                                   |
| MODEADx=D         | Установка для входа <b>х</b> режима работы как аналогового и цифрового входа (см. MODEAD).                                      |
| POROGVOLTx=3.0    | Установка для входа <b>х</b> порога переключения 3,0 В при работе в качестве цифрового входа (см. POROGVOLT).                   |
| FORESTREGISTRY    | Включение режима адаптации под ПП 1378.                                                                                         |
| FIXEGTSPERIODSEND | Включение режима фиксированного периода получения навигационной информации в протоколе EGTS.                                    |

### TID

Указание идентификатора контроллера (terminal ID).

- Доступна через сервер и SMS.
- Версия прошивки: 01.02-а4 и выше.
- Команда запроса: GTID.

# Формат команды:

TID=id;

# Параметры:

| id | Идентификатор, который используется при передаче данных в протоколе EGTS (04294967295). По умолчанию TID совпадает с заводским серийным номером бортового контроллера АвтоГРАФ. |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

# Пример команды:

TID=8922222;

# Пример ответа:

TID=8922222;

# **VEHICLE\_VHT**

Указание VHT — типа транспортного средства.

- Доступна через сервер и SMS.
- Версия прошивки: 01.02-а4 и выше.
- Команда запроса: GVEHICLE\_VHT.

# Формат команды:

VEHICLE\_VHT=type;

# Параметры:

|      | Тип транспортного средства:               |
|------|-------------------------------------------|
|      | • 1 — пассажирский (Class M1);            |
|      | • 2 — автобус (Class M2);                 |
|      | • 3 — автобус (Class M3);                 |
|      | • 4 — легкая грузовая машина (Class N1);  |
|      | • 5 — тяжелая грузовая машина (Class N2); |
| 4    | • 6 — тяжелая грузовая машина (Class N3); |
| type | • 7 — мотоцикл (Class L1e);               |
|      | • 8 — мотоцикл (Class L2e);               |
|      | • 9 — мотоцикл (Class L3e);               |
|      | • 10 — мотоцикл (Class L4e);              |
|      | • 11 — мотоцикл (Class L5e);              |
|      | • 12 — мотоцикл (Class L6e);              |
|      | • 13 — мотоцикл (Class L7e).              |

# Пример команды:

VEHICLE\_VHT=4;

# Пример ответа:

VEHICLE\_VHT=4;

# VEHICLE\_VPST

Указание VPST — типа энергоносителя транспортного средства.

- Доступна через сервер и SMS.
- Версия прошивки: 01.02-а4 и выше.
- Команда запроса: GVEHICLE\_VPST.

# Формат команды:

VEHICLE\_VPST=type;

### Параметры:

|      | Тип энергоносителя транспортного средства, битовое поле, в формате НЕХ:                                                                                                                                                           |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      | • если все биты 0, то тип не задан;                                                                                                                                                                                               |
|      | • биты 316: не используются;                                                                                                                                                                                                      |
|      | • бит 5: 1 — водород;                                                                                                                                                                                                             |
|      | • бит 4: 1 — электричество (более 42 В и 100 А·ч);                                                                                                                                                                                |
|      | • бит 3: 1 — жидкий пропан (LPG);                                                                                                                                                                                                 |
|      | • бит 2: 1 — сжиженный природный газ (CNG);                                                                                                                                                                                       |
|      | • бит 1:1 — дизель;                                                                                                                                                                                                               |
| type | • бит 0: 1 — бензин.                                                                                                                                                                                                              |
| 7  - |                                                                                                                                                                                                                                   |
|      | Порядок настройки:                                                                                                                                                                                                                |
|      | 1. Сформируйте битовое поле, установив 1 для выбора типа энергоносителя. Битовое поле формируется старшими битами вперед. Например, 001010 для установки типов энергоносителей жидкий пропан и дизель (биты 316 не используются). |
|      | 2. Переведите последовательность в HEX (например, используя программный калькулятор).                                                                                                                                             |
|      | 3. Используйте полученное значение в качестве параметра команды.                                                                                                                                                                  |

### Пример команды:

Тип энергоносителя — жидкий пропан и дизель. Соответствующее битовое поле — 001010.

Значение в НЕХ — А.

VEHICLE\_VPST=A;

### Пример ответа:

VEHICLE\_VPST=A;

# **VEHICLE\_VIN**

Установка VIN (Vehicle Identification Number) для передачи данных в протоколе EGTS.

- Доступна через сервер и SMS.
- Версия прошивки: 01.02-а4 и выше.
- Команда запроса: GVEHICLE\_VIN.

# Формат команды:

VEHICLE\_VIN=vin;

# Параметры:

| vin                                   | Идентификационный номер (Vehicle Identification Number) транспортного средства |
|---------------------------------------|--------------------------------------------------------------------------------|
| \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | (структура описана в ISO 3779).                                                |

### Пример команды:

VEHICLE\_VIN=1234567890;

# Пример ответа:

VEHICLE\_VIN=1234567890;

#### **FORESTREGISTRY**

Включение режима адаптации под ПП 1378.

- Доступна через сервер и SMS.
- Команда запроса: GFORESTREGISTRY.

#### Формат команды:

FORESTREGISTRY=f;

#### Параметры:

| l | f | Включение режима адаптации под ПП 1378 (0 — выключено, 1 — включено). |
|---|---|-----------------------------------------------------------------------|
|---|---|-----------------------------------------------------------------------|

#### Пример команды:

FORESTREGISTRY=1;

### Пример ответа:

FORESTREGISTRY=1;

**Примечание.** Данная опция устанавливает для устройств АвтоГРАФ-АСН период получения навигационной информации в соответствии с п. 364 ПП РФ от 25.08.2023 N 1378 «Об утверждении Правил ведения государственного лесного реестра» не менее:

- 15 минут или 5 километров при движении машины, транспортного средства;
- 2 часов при стоянке машины, транспортного средства;
- 45 градусов при повороте в движении машины, транспортного средства.

**Примечание.** При одновременном включении режимов FIXEGTSPERIODSEND и FORESTREGISTRY будет использоваться режим FORESTREGISTRY.

#### **FIXEGTSPERIODSEND**

Включение режима фиксированного периода получения навигационной информации в протоколе EGTS.

- Доступна через сервер и SMS.
- Команда запроса: GFIXEGTSPERIODSEND.

#### Формат команды:

FIXEGTSPERIODSEND=f;

#### Параметры:

| f |
|---|
|---|

#### Пример команды:

FIXEGTSPERIODSEND=1;

#### Пример ответа:

FIXEGTSPERIODSEND=1;

**Примечание.** При включении данной опции навигационная информация в протоколе EGTS будет фиксироваться и передаваться с периодом отправки на сервер:

- Для устройств АвтоГРАФ-АСН навигационные данные в протоколе EGTS будут фиксироваться с периодом передачи второго модема.
- Для прочих устройств навигационные данные в протоколе EGTS будут фиксироваться с периодом передачи SIM 1.

При этом запись и передача навигационных данных в других протоколах останется без изменений, в том числе с возможностью использовать адаптивную запись.

**Примечание.** При одновременном включении режимов <u>FIXEGTSPERIODSEND</u> и <u>FORESTREGISTRY</u> будет использоваться режим FORESTREGISTRY.

# Дискретные выходы

| Список команд | Описание                                                                              |
|---------------|---------------------------------------------------------------------------------------|
| OUT           | Установка состояния выхода.                                                           |
| MOUT          | Установка режима дискретного выхода.                                                  |
| OUTFSOURCE    | Установка параметра, пропорционально которому выдается частота на выходе контроллера. |
| OUTCOEFF      | Установка коэффициента в режиме частотного выхода.                                    |
| PULSE         | Выдача импульса на выход.                                                             |

# **OUT**

Установка состояния выхода.

- Доступна через сервер и SMS.
- Версия прошивки: 01.02-а4 и выше.
- Команда запроса: GOUT.

# Формат команды:

OUTn=a;

# Параметры:

| n | Номер выхода.                                                                              |
|---|--------------------------------------------------------------------------------------------|
| a | <ul><li>Состояние выхода:</li><li>0 — выход выключен;</li><li>1 — выход включен.</li></ul> |

# Пример команды:

OUT1=1;

# Пример ответа:

OUT1=1;

# **MOUT**

Установка режима дискретного выхода.

- Доступна через сервер и SMS.
- Версия прошивки: 13.16 и выше.
- Команда запроса: GMOUTn.

# Формат команды:

MOUTn=m;

# Параметры:

| n | Номер выхода, 13 в зависимости от модификации контроллера.                                                                                                                                                                                                                                                                              |
|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| m | <ul> <li>Режим работы выхода:</li> <li>0 — дискретный выход, при включении контроллера выход выключен;</li> <li>1 — дискретный выход, при включении контроллера выход включен;</li> <li>F — частотный выход. Частота выходного сигнала изменяется пропорционально параметру контроллера (см. команды OUTFSOURCE и OUTCOEFF).</li> </ul> |

# Пример команды:

M0UT1=1;

# Пример ответа:

M0UT1=1;

### **OUTFSOURCE**

Установка параметра, пропорционально которому выдается частота на выходе контроллера.

- Доступна через сервер и SMS.
- Версия прошивки: 13.16 и выше.
- Команда запроса: GOUTFSOURCEn.

# Формат команды:

OUTFSOURCEn=s;

### Параметры:

| n | Номер выхода.                                                                            |
|---|------------------------------------------------------------------------------------------|
| s | Параметр, пропорционально которому выдается частота на выходе контроллера (см. Levelld). |

# Пример команды:

OUTFSOURCE1=206;

# Пример ответа:

OUTFSOURCE1=206;

# **OUTCOEFF**

Установка коэффициента в режиме частотного выхода.

- Доступна через сервер и SMS.
- Версия прошивки: 13.16 и выше.
- Команда запроса: GOUTCOEFFn.

# Формат команды:

OUTCOEFFn=f;

# Параметры:

| n | Номер выхода.                                                                              |
|---|--------------------------------------------------------------------------------------------|
| f | Коэффициент, на который умножается параметр для выдачи на выход в режиме частоты (010000). |

# Пример команды:

OUTCOEFF1=0.7;

# Пример ответа:

OUTCOEFF=0.7;

#### **PULSE**

Выдача импульса на выход.

- Доступна через сервер и SMS.
- Версия прошивки: 01.02-а4 и выше.
- Команда запроса: —

# Формат команды:

PULSEn=t;

### Параметры:

| n | Номер выхода.                                                   |
|---|-----------------------------------------------------------------|
| t | Длительность импульса, в секундах. Значение может быть дробным. |

#### Пример команды:

PULSE1=10.5;

# Пример ответа:

PULSE1=10.5;

**Примечание.** Следует учитывать, что при установке для параметра **t** значения, превышающего сутки, выдерживание заданного временного интервала не гарантируется из-за автоматического ежесуточного перезапуска контроллера.

# Дискретные входы

| Список команд | Описание                                                     |
|---------------|--------------------------------------------------------------|
| PERIODCOUNT12 | Установка периода записи счетчиков (и частоты) входов 1 и 2. |
| PERIODCOUNT34 | Установка периода записи счетчиков (и частоты) входов 3 и 4. |
| INPUTMODExx   | Установка режима работы входа хх.                            |
| INPUTPULLx    | Подтяжка универсального входа х.                             |
| INPUTS        | Запрос состояния всех входов.                                |
| INPUTx        | Запрос состояния входов.                                     |

### PERIODCOUNT12

Установка периода записи счетчиков (и частоты) входов 1 и 2.

- Доступна через сервер и SMS.
- Версия прошивки: 01.02-а4 и выше.
- Команда запроса: GPERIODCOUNT12.

# Формат команды:

PERIODCOUNT12=x;

# Параметры:

| х | Период записи в секундах (03600). 0 отключает запись счетчиков. |
|---|-----------------------------------------------------------------|
|---|-----------------------------------------------------------------|

# Пример команды:

PERIODCOUNT12=30;

# Пример ответа:

PERIODCOUNT12=30;

# **PERIODCOUNT34**

Установка периода записи счетчиков (и частоты) входов 3 и 4.

- Доступна через сервер и SMS.
- Версия прошивки: 01.02-а4 и выше.
- Команда запроса: GPERIODCOUNT34.

# Формат команды:

PERIODCOUNT34=x;

### Параметры:

| х | Период записи в секундах (03600). 0 отключает запись счетчиков. |
|---|-----------------------------------------------------------------|
|---|-----------------------------------------------------------------|

# Пример команды:

PERIODCOUNT34=120;

# Пример ответа:

PERIODCOUNT34=120;

# **INPUTMODExx**

Установка режима работы входа хх.

- Доступна через сервер и SMS.
- Версия прошивки: 01.02-а4 и выше.
- Команда запроса: GINPUTMODExx.

# Формат команды:

INPUTMODExx=m;

### Параметры:

| хх | Номер входа (0109).                                                             |
|----|---------------------------------------------------------------------------------|
| m  | Режим (A, C, F, P):  • A — обычный вход;  • C — счетчик;  • F — частотный вход. |

# Пример команды:

INPUTMODE01=A;

# Пример ответа:

INPUTMODE01=A;

# **INPUTPULL**x

Подтяжка универсального входа х.

- Доступна через сервер и SMS.
- Версия прошивки: 01.12 и выше.
- Команда запроса: GINPUTPULLx.

# Формат команды:

INPUTPULLx=m;

### Параметры:

| х | Номер входа.                                                         |
|---|----------------------------------------------------------------------|
| m | Уровень подтяжки (L, U): • L — подтяжка к «–»; • U — подтяжка к «+». |

# Пример команды:

INPUTPULL1=U;

# Пример ответа:

INPUTPULL1=U;

Примечание. Команда действует только на универсальный вход.

### **INPUTS**

Запрос состояния всех входов.

- Доступна через сервер и SMS.
- Версия прошивки: 01.02-а4 и выше.
- Команда запроса: GINPUTS. Команды INPUTS и GINPUTS работают одинаково, только на запрос.

# Формат команды:

INPUTS;

# Формат ответа:

INPUTx=b,c,d,e,f,[g],[F];

# Параметры:

| х | Номер входа (19).                                                                                                                                                                                                  |
|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| b | <ul><li>Состояние входа:</li><li>0 — минус;</li><li>1 — плюс.</li></ul>                                                                                                                                            |
| С | Количество импульсов, подсчитанных входом.                                                                                                                                                                         |
| d | Время последнего изменения состояния входа (в миллисекундах с момента старта контроллера).                                                                                                                         |
| е | Текущее время в контроллере (в миллисекундах с момента старта контроллера).                                                                                                                                        |
| f | Имя входа.                                                                                                                                                                                                         |
| g | Наличие новых данных о частоте с предыдущего запроса (передается, начиная с прошивки 13.24):  • 0 — с момента последнего запроса новых данных не было;  • 1 — с момента последнего запроса появились новые данные. |
| F | Частота в Гц, число с плавающей точкой (передается, начиная с прошивки 13.24).                                                                                                                                     |

# Пример команды:

INPUTS;

### Пример ответа:

INPUT=1,0,512,65473,75632,INPUT\_M\_1;

#### **INPUT**x

Запрос состояния входов.

- Доступна через сервер и SMS.
- Версия прошивки: 01.02-а4 и выше.
- Команда запроса: GINPUTx. Команды INPUTx и GINPUTx работают одинаково, только на запрос.

#### Формат команды:

INPUTx;

#### Параметры:

| l x | Номер входа (19).                       |
|-----|-----------------------------------------|
|     | • • • • • • • • • • • • • • • • • • • • |

#### Формат ответа:

INPUTx=b,c,d,e,f,[g],[F];

## Параметры:

| х | Номер входа (19).                                                                                                                                                                                                  |
|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| b | Состояние входа: • 0 — минус; • 1 — плюс.                                                                                                                                                                          |
| с | Количество импульсов, подсчитанных входом.                                                                                                                                                                         |
| d | Время последнего изменения состояния входа (в миллисекундах с момента старта контроллера).                                                                                                                         |
| е | Текущее время в контроллере (в миллисекундах с момента старта контроллера).                                                                                                                                        |
| f | Имя входа.                                                                                                                                                                                                         |
| g | Наличие новых данных о частоте с предыдущего запроса (передается, начиная с прошивки 13.24):  • 0 — с момента последнего запроса новых данных не было;  • 1 — с момента последнего запроса появились новые данные. |
| F | Частота в Гц, число с плавающей точкой (передается, начиная с прошивки 13.24).                                                                                                                                     |

## Пример команды:

INPUT1;

# Пример ответа:

INPUT1=0,512,65473,75632,INPUT\_M\_1; INPUT5=1,69580,1758657,1758758,INPUT\_A1\_5,0,659.096313;

# Универсальные входы

| Список команд | Описание                               |
|---------------|----------------------------------------|
| UINPUTPARAMSx | Запрос состояния универсального входа. |

#### **UINPUTPARAMS**x

Запрос состояния универсального входа.

- Доступна через сервер и SMS.
- Версия прошивки:
- Команда запроса: GUINPUTPARAMSx. Команды UINPUTPARAMSx и GUINPUTPARAMSx работают одинаково, только на запрос.

#### Формат команды:

GUINPUTPARAMSx;

#### Параметры:

| х Номер входа. |  |
|----------------|--|
|----------------|--|

**Формат ответа:** ответ на команду, если вход настроен в аналоговом режиме: UINPUTPARAMSx=b,c,d,e;

## Параметры:

| х | Номер входа.                                                                                                                                                                                      |
|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| b | Имя входа, строка.                                                                                                                                                                                |
| С | Режим работы (значение параметра команды MODEADx): A — аналоговый.                                                                                                                                |
| d | <ul> <li>Наличие новых данных с предыдущего запроса:</li> <li>0 — с момента последнего запроса новых данных не было;</li> <li>1 — с момента последнего запроса появились новые данные.</li> </ul> |
| е | Напряжение на входе, в вольтах (030), число с плавающей точкой.                                                                                                                                   |

**Формат ответа:** ответ на команду, если вход настроен в дискретном режиме: UINPUTPARAMSx=b,c,d,e,f,g,h,i,v;

## Параметры:

| х | Номер входа.                                                                                                                        |  |
|---|-------------------------------------------------------------------------------------------------------------------------------------|--|
| b | Имя входа, строка.                                                                                                                  |  |
| c | Режим работы (значение параметра команды MODEADx):  • D — дискретный;  • M — цифро-аналоговый.                                      |  |
| d | Режим работы дискретного входа (значение параметра команды INPUTMODEx):  • А — обычный вход;  • С — счетчик;  • F — частотный вход. |  |
| е | Уровень подтяжки (значение параметра команды <u>INPUTPULLx</u> ): • L — подтяжка к «–»; • U — подтяжка к «+».                       |  |

| f | Порог переключения, в вольтах (030), число с плавающей точкой (значение параметра команды POROGVOLT).                                                             |
|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| g | Наличие новых данных с предыдущего запроса:  • 0 — с момента последнего запроса новых данных не было;  • 1 — с момента последнего запроса появились новые данные. |
| h | Состояние входа: • 0 — минус; • 1 — плюс.                                                                                                                         |
| i | Значение счетчика/частоты в зависимости от <b>d</b> :  • A, C — счетчик, целое число;  • F — частота в Гц, число с плавающей точкой.                              |
| v | Напряжение на входе, в вольтах (030), число с плавающей точкой.                                                                                                   |

# Пример команды:

GUINPUTPARAMS1;

# Пример ответа:

UINPUTPARAMS1=Ignition,D,A,U,7,1,1,565;

**Примечание.** Команда должна применяться только к универсальным входам.

# Тревожная кнопка

Настройка тревожной кнопки.

| Список команд | Описание                                                                               |
|---------------|----------------------------------------------------------------------------------------|
| ALARMINPUT    | Выбор входа контроллера, к которому подключена тревожная кнопка.                       |
| ALARMSTATE    | Установка состояния входа контроллера, при котором тревожная кнопка считается нажатой. |
| ALARM         | Настройка входа тревожной кнопки одной командой.                                       |

#### **ALARMINPUT**

Выбор входа контроллера, к которому подключена тревожная кнопка.

- Доступна через сервер и SMS.
- Версия прошивки: 01.04-а11 и выше.
- Команда запроса: GALARMINPUT.

# Формат команды:

ALARMINPUT=inp;

## Параметры:

| inn | Номер входа контроллера, к которому подключена тревожная кнопка. |
|-----|------------------------------------------------------------------|
| ""  | 0 — тревожная кнопка отключена.                                  |

#### Пример команды:

ALARMINPUT=2;

## Пример ответа:

ALARMINPUT=2;

#### **ALARMSTATE**

Установка состояния входа контроллера, при котором тревожная кнопка считается нажатой.

- Доступна через сервер и SMS.
- Версия прошивки: 01.04-а11 и выше.
- Команда запроса: GMOTIONFLAGSTATE.

## Формат команды:

ALARMSTATE=state;

#### Параметры:

| I state 1. | Состояние входа контроллера, при котором тревожная кнопка считается нажатой (0 или 1). |
|------------|----------------------------------------------------------------------------------------|
|------------|----------------------------------------------------------------------------------------|

## Пример команды:

ALARMSTATE=1;

## Пример ответа:

ALARMSTATE=1;

#### **ALARM**

Настройка входа тревожной кнопки одной командой.

- Доступна через сервер и SMS.
- Версия прошивки: 13.39 и выше.
- Команда запроса: GALARM.

#### Формат команды:

ALARM=inp,state,pull;

## Параметры:

| inp   | Номер входа контроллера, к которому подключена тревожная кнопка.  0 — тревожная кнопка отключена.       |  |
|-------|---------------------------------------------------------------------------------------------------------|--|
| state | Состояние входа контроллера, при котором тревожная кнопка считается нажатой (0 или 1).                  |  |
| pull  | (Опционально) уровень подтяжки универсального входа (L, U): • L — подтяжка к «–»; • U — подтяжка к «+». |  |

#### Пример команды:

ALARM=1,0,U;

## Пример ответа:

ALARM=1,0,U;

**Примечание.** Команда фактически перенастраивает параметры ALARMINPUT и ALARMSTATE, а также INPUTPULLx соответствующего входа. Дополнительно она позволяет запрашивать эти параметры одной командой.

Также соответствующий вход настраивается как цифровой (MODEADx=D;) и обычный (INPUTMODExx=A;).

# Аналоговые входы

| Список команд | Описание                                                             |
|---------------|----------------------------------------------------------------------|
| GANALOGADC    | Запрос значений АЦП для аналоговых входов.                           |
| PERIODANALOG  | Установка периода записи аналоговых данных.                          |
| MODEAD        | Установка режима работы аналогового/универсального входа.            |
| POROGVOLT     | Установка порога переключения при работе в качестве цифрового входа. |

#### **GANALOGADC**

Запрос значений АЦП для аналоговых входов.

- Доступна через сервер и SMS.
- Версия прошивки: 13.33 и выше.
- Команда запроса: GANALOGADC.

## Формат команды:

GANALOGADCx;

#### Параметры:

| x | Номер аналогового входа (1 или 2). |
|---|------------------------------------|
|---|------------------------------------|

#### Формат ответа:

ANALOGADCx=value;

## Параметры:

| value | Значение АЦП (10 бит) для входа <b>х</b> . |
|-------|--------------------------------------------|
|-------|--------------------------------------------|

## Пример команды:

GANALOGADC1;

# Пример ответа:

ANALOGADC1=1023;

#### **PERIODANALOG**

Установка периода записи аналоговых данных.

- Доступна через сервер и SMS.
- Версия прошивки: 01.02-а4 и выше.
- Команда запроса: GPERIODANALOG.

## Формат команды:

PERIODANALOG=x;

#### Параметры:

| х | Период записи в секундах (13600). |
|---|-----------------------------------|
|---|-----------------------------------|

## Пример команды:

PERIODANALOG=10;

# Пример ответа:

PERIODANALOG=10;

#### **MODEAD**

Установка режима работы аналогового/универсального входа.

- Доступна через сервер и SMS.
- Версия прошивки: 01.02-а4 и выше.
- Команда запроса: GMODEADx.

## Формат команды

MODEADx=a;

#### Параметры:

| х | Номер аналогового/универсального входа.                                                                                                                                                                                                                                                                                                                        |
|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| a | <ul> <li>Режим работы ('A', 'D', 'M'):</li> <li>А — только как аналоговый вход;</li> <li>D — работа в режиме аналогового и цифрового входов (для универсального входа — работа в режиме только цифрового входа);</li> <li>М — цифро-аналоговый режим (записываются и аналоговые данные, и состояние входа как цифрового, счетчики не записываются).</li> </ul> |

**Примечание.** При отправке недопустимого значения параметра в контроллере будет установлено значение по умолчанию — А (только как аналоговый вход).

#### Пример команды:

MODEAD1=A;

## Пример ответа:

MODEAD1=A;

#### **POROGVOLT**

Установка порога переключения при работе в качестве цифрового входа.

- Доступна через сервер и SMS.
- Версия прошивки: 01.04-а1 и выше.
- Команда запроса: GPOROGVOLTx.

## Формат команды

POROGVOLTx=a;

#### Параметры:

| х | Номер аналогового/универсального входа.                                                                               |
|---|-----------------------------------------------------------------------------------------------------------------------|
| a | Порог переключения:  • аналоговый вход 1 — до 10 B;  • аналоговый вход 2 — до 24 B;  • универсальные входы — до 30 B. |

**Примечание.** В случае отправки недопустимого значения в контроллере будет установлено значение 5,0 (в ответ вернется это значение).

## Пример команды:

GPOROGVOLT1=2.0;

#### Пример ответа:

POROGVOLT1=2.0;

# Шина RS-485

| Список команд  | Описание                                                                                                                                                   |
|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RS485BAUDRATE1 | Установка скорости (baudrate) для интерфейса RS-485 (1).                                                                                                   |
| RS485FORMATx   | Установка формата данных для интерфейса RS-485.                                                                                                            |
| SND485         | Отправка данных по шине RS-485.                                                                                                                            |
| S485           | Отправка данных через интерфейс RS-485 (1).                                                                                                                |
| EXTAGHIPSRC    | Выбор шины RS-485, используемой для работы с запросами внешних устройств. Включение запросов может требоваться в некоторых режимах подключаемых устройств. |

#### **RS485BAUDRATE1**

Установка скорости (baudrate) для интерфейса RS-485 (1).

- Доступна через сервер и SMS.
- Версия прошивки: 01.02-а4 и выше.
- Команда запроса: GRS485BAUDRATE1.

## Формат команды:

RS485BAUDRATE1=b;

#### Параметры:

| b |  | Скорость (baudrate) интерфейса RS485(1), в бит/с (12001000000). |
|---|--|-----------------------------------------------------------------|
|---|--|-----------------------------------------------------------------|

## Пример команды:

RS485BAUDRATE1=19200;

# Пример ответа:

RS485BAUDRATE1=19200;

#### RS485FORMATx

Установка формата данных для интерфейса RS-485.

- Доступна через сервер и SMS.
- Версия прошивки: 13.22 и выше.
- Команда запроса: GRS485FORMATx.

# Формат команды:

RS485FORMATx=format;

#### Параметры:

| х      | Номер шины RS-485 (1 или 2).                                                             |
|--------|------------------------------------------------------------------------------------------|
| format | Формат данных интерфейса RS-485:  • 0 — 8-N-1;  • 1 — 8-N-2;  • 2 — 8-O-1;  • 3 — 8-E-1. |

## Пример команды:

RS485FORMAT1=1;

# Пример ответа:

RS485FORMAT1=1;

#### **SND485**

Отправка данных по шине RS-485.

- Доступна через сервер и SMS.
- Версия прошивки: 13.16.
- Команда запроса: —

#### Формат команды:

SND485=num,timeout,ansLen,sendLen:data;

#### Параметры:

| num     | Номер интерфейса.                                                                                                                                   |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| timeout | Таймаут ответа, в миллисекундах (04294967295).                                                                                                      |
| ansLen  | Ожидаемое количество данных в ответе, в байтах (0256).                                                                                              |
| sendLen | Отправляемое количество данных, в байтах (0256).                                                                                                    |
| data    | Отправляемые данные в виде последовательности значений байтов в НЕХ без разделителей (значения байтов должны быть дополнены нулями до двух знаков). |

#### Формат ответа:

SND485=num,ansLen:data;

#### Параметры:

| num    | Номер интерфейса.                                                                                                                               |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| ansLen | Количество данных в ответе, в байтах.                                                                                                           |
| data   | Принятые данные в виде последовательности значений байтов в НЕХ без разделителей (значения байтов должны быть дополнены нулями до двух знаков). |

#### Пример команды:

SND485=1,250,100,4:31D006F0;

#### Пример ответа:

SND485=1,4:31D006F0;

**Примечание.** Следует учитывать, что при установке для параметра **timeout** значения, превышающего сутки, выдерживание заданного временного интервала не гарантируется из-за автоматического ежесуточного перезапуска контроллера.

#### **S485**

Отправка данных через интерфейс RS-485 (1).

- Доступна через сервер и SMS.
- Версия прошивки: 13.16.
- Команда запроса: —

#### Формат команды:

S485=sendLen:ansLen:timeout:baudrate:data;

#### Параметры:

| sendLen  | Отправляемое количество данных, в байтах (0256).                                                                                                    |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| ansLen   | Ожидаемое количество данных в ответе, в байтах (0256).                                                                                              |
| timeout  | Таймаут ответа, в миллисекундах (04294967295).                                                                                                      |
| baudrate | Скорость передачи, в бит/с.                                                                                                                         |
| data     | Отправляемые данные в виде последовательности значений байтов в НЕХ без разделителей (значения байтов должны быть дополнены нулями до двух знаков). |

#### Формат ответа:

S485=ansLen:data;

#### Параметры:

| ansLen | Количество данных в ответе, в байтах.                                                                                                           |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| data   | Принятые данные в виде последовательности значений байтов в НЕХ без разделителей (значения байтов должны быть дополнены нулями до двух знаков). |

#### Пример команды:

S485=4:5:250:19200:31D006F0;

#### Пример ответа:

S485=5:31D006F0FF;

**Примечание.** Следует учитывать, что при установке для параметра **timeout** значения, превышающего сутки, выдерживание заданного временного интервала не гарантируется из-за автоматического ежесуточного перезапуска контроллера.

#### **EXTAGHIPSRC**

Выбор шины RS-485, используемой для работы с запросами внешних устройств. Включение запросов может требоваться в некоторых режимах подключаемых устройств.

- Доступна через сервер и SMS.
- Версия прошивки: 13.21.
- Команда запроса: GEXTAGHIPSRC.

## Формат команды:

EXTAGHIPSRC=id;

#### Параметры:

| id | Номер шины RS-485, используемой для работы с запросами внешних устройств: |
|----|---------------------------------------------------------------------------|
|    | • 0 — работа с запросами внешних устройств отключена;                     |
|    | • 1 — RS-485 (1);                                                         |
|    | • 2 — RS-485 (2).                                                         |

#### Пример команды:

EXTAGHIPSRC=1;

## Пример ответа:

EXTAGHIPSRC=1;

# Протокол MODBUS

| Список команд              | Описание                                                                          |
|----------------------------|-----------------------------------------------------------------------------------|
| MODBUSID                   | Присвоение адресов считывателям на шине RS-485 (MODBUS).                          |
| AGCR                       | Присвоение адреса отдельному считывателю на шине RS-485 (MODBUS).                 |
| MODBUSIDCONTROL            | Запрос номера карты в считывателе на шине RS-485 (MODBUS).                        |
| MODBUSIN                   | Запрос данных MODBUS.                                                             |
| MODBUSOUT                  | Запись данных в регистр MODBUS.                                                   |
| MODBUSSEN                  | Настройка произвольного датчика на шине RS-485 (MODBUS).                          |
| MODBUSSENCONTROL           | Запрос текущих параметров произвольного датчика на шине RS-485 (MODBUS).          |
| MODBUSSENPERIOD            | Установка периода записи данных произвольных датчиков на<br>шине RS-485 (MODBUS). |
| MODBUSSENPARAMSTIMEOUT     | Установка таймаута запроса короткого параметра на шине<br>RS-485 (MODBUS).        |
| MODBUSSENLONGPARAMSTIMEOUT | Установка таймаута запроса длинного параметра на шине RS-485 (MODBUS).            |

| Список групп параметров | Описание             |
|-------------------------|----------------------|
| ModbusCardreaderIdType  | Формат номера карты. |
| ModbusCommands          | Команды MODBUS.      |
| ModbusConvTypes         | Типы преобразования. |

#### **MODBUSID**

Присвоение адресов считывателям на шине RS-485 (MODBUS).

- Доступна через сервер и SMS.
- Версия прошивки: 01.02-а4 и выше.
- Команда запроса: GMODBUSID.

## Формат команды:

MODBUSID=A1,A2,A3,A4,A5,A6,A7,A8;

#### Параметры:

| A., | Адреса считывателей в шестнадцатеричной системе, без 0x (0FF),                   |
|-----|----------------------------------------------------------------------------------|
| An  | где <b>n</b> — порядковый номер считывателя (18). 0 или FF — картридер отключен. |

**Примечание.** Необходимо заполнять все 8 полей адресов. Неиспользуемые заполняются кодом отключения: 0 или FF.

## Пример команды:

MODBUSID=F1,F2,F3,F4,F5,F6,F7,F8;

## Пример ответа:

MODBUSID=F1,F2,F3,F4,F5,F6,F7,F8;

#### **AGCR**

Присвоение адреса отдельному считывателю на шине RS-485 (MODBUS).

- Доступна через сервер и SMS.
- Версия прошивки: 01.02-а4 и выше.
- Команда запроса: AGCR.

## Формат команды:

AGCRxx=A;

#### Параметры:

| xx | Номер считывателя, дополненный спереди нулем до двух цифр (0108). |
|----|-------------------------------------------------------------------|
| Α  | Адрес в HEX, без 0x (0FF). 0 или FF — считыватель отключен.       |

**Примечание.** При недопустимом значении параметра **хх** команда вернет сообщение WRONG FORMAT, а не UNSUPPORTED PARAMETER.

## Пример команды:

AGCR02=F2;

# Пример ответа:

AGCR02=F2;

#### **MODBUSIDCONTROL**

Запрос номера карты в считывателе на шине RS-485 (MODBUS).

- Доступна через сервер и SMS.
- Версия прошивки: 01.08 и выше.
- Команды запроса: MODBUSIDCONTROL и GMODBUSIDCONTROL. Обе команды работают одинаково, только на запрос.

Примечание. Ответ на команду имеет разный формат в зависимости от формата выдачи номера карты.

#### Формат команды:

GMODBUSIDCONTROLx;

#### Формат ответа:

MODBUSIDCONTROLx=a,b,c;

#### Параметры:

| х | Номер картридера (18).                                                                                                                                                                                                                                                                            |
|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| a | <ul> <li>Наличие новых данных с момента предыдущего запроса:</li> <li>0 — нет новых данных;</li> <li>1 — новые данные.</li> </ul>                                                                                                                                                                 |
| b | Формат номера карты (см. ModbusCardreaderldType).                                                                                                                                                                                                                                                 |
| С | <ul> <li>Hoмер карты, формат зависит от параметра <b>b</b>:</li> <li><b>b</b> = MODBUS_ID_TYPE_DEC_POINT: c1.c2 (десятичное число с точкой);</li> <li><b>b</b> = MODBUS_ID_TYPE_HEX: 0xc (шестнадцатеричное число с 0x);</li> <li><b>b</b> = MODBUS_ID_TYPE_DEC: c (десятичное число).</li> </ul> |

#### Пример команды:

GMODBUSIDCONTROL8;

#### Пример ответа:

MODBUSIDCONTROL8=1,0,86.56951; MODBUSIDCONTROL8=0,1,0x290056DE77; MODBUSIDCONTROL8=1,2,176099352183;

#### **MODBUSIN**

Запрос данных MODBUS.

- Доступна через сервер и SMS.
- Версия прошивки: 01.12 и выше.
- Команда запроса: —

#### Формат команды:

MODBUSIN=addr,reg\_addr,byte;

## Формат ответа:

MODBUSIN=addr,reg\_addr,byte,data;

#### Параметры:

| addr     | Адрес датчика/внешнего устройства, подключенного к контроллеру АвтоГРАФ по шине RS-485 по протоколу MODBUS (0FF). Адрес должен быть задан в формате HEX.                     |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| reg_addr | Начальный адрес регистра MODBUS для чтения, в формате HEX (0FFFF). Адреса регистров для чтения указаны в карте регистров MODBUS устройства, с которого запрашиваются данные. |
| byte     | Длина запрашиваемых данных, в байтах (2256, четное число).                                                                                                                   |
| data     | Запрашиваемые данные в НЕХ. Принимаются младшими байтами вперед.                                                                                                             |

#### Пример команды:

Контроллеру отправлена команда запроса значения регистра 0064 с внешнего устройства, подключенного к шине RS-485 и имеющего адрес C0.

MODBUSIN=C0,0064,2;

#### Пример ответа:

В ответ на запрос вернулось значение 4100 (НЕХ). Так как данные принимаются младшими байтами вперед, то содержимое регистра 0041 (НЕХ) или 65 (DEC).

Адрес С0 принадлежит датчику угла наклона ТКАМ и в регистре 0064 (HEX) хранится значение верхнего порога срабатывания выхода 1 датчика (в градусах). Значение регистра — 65.

MODBUSIN=C0,0064,2,4100;

#### **MODBUSOUT**

Запись данных в регистр MODBUS.

- Команда позволяет изменить значение регистра MODBUS. Например, таким образом может быть выполнена удаленная настройка внешнего датчика или устройства, подключенного к контроллеру АвтоГРАФ по шине RS-485.
- Доступна через сервер и SMS.
- Версия прошивки: 01.12 и выше.
- Команда запроса: —

#### Формат команды:

MODBUSOUT=addr,reg\_addr,byte,timeout,data;

#### Параметры:

| addr     | Адрес датчика/внешнего устройства, подключенного к контроллеру АвтоГРАФ по шине RS-485 по протоколу MODBUS (0FF). Адрес должен быть задан в формате HEX.                     |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| reg_addr | Начальный адрес регистра MODBUS для записи, в формате HEX (0FFFF). Адреса регистров для записи указаны в карте регистров MODBUS устройства, с которого запрашиваются данные. |
| byte     | Длина передаваемых данных, в байтах (2256, четное число).                                                                                                                    |
| timeout  | Таймаут обработки команды, в миллисекундах (14294967295).<br>Рекомендованное значение — 100 мс.                                                                              |
| data     | Данные для записи в регистр, в формате HEX (4 знака). Данные необходимо передавать младшими байтами вперед.                                                                  |

#### Пример команды:

Контроллеру отправлена команда записи значения 4100 в регистр MODBUS с начальным адресом 0064 внешнего устройства, подключенного к шине RS-485 и имеющего адрес C0.

Адрес С0 принадлежит датчику угла наклона ТКАМ, и в регистре 0064 (HEX) хранится значение верхнего порога срабатывания выхода 1 датчика (в градусах).

Так как данные необходимо передавать младшими байтами вперед, то в нормальном представлении значение 4100 — это 0041 (HEX) или 65 (DEC).

MODBUSOUT=C0,0064,2,100,4100;

#### Пример ответа:

MODBUSOUT=C0,0064,2,100,4100;

**Примечание.** Следует учитывать, что при установке для параметра **timeout** значения, превышающего сутки, выдерживание заданного временного интервала не гарантируется из-за автоматического ежесуточного перезапуска контроллера.

#### **MODBUSSEN**

Настройка произвольного датчика на шине RS-485 (MODBUS).

- Доступна через сервер и SMS.
- Версия прошивки: 01.02-а4 и выше.
- Команда запроса: GMODBUSSENxxx.

#### Формат команды:

MODBUSSENxxx=addr,reg,cmd,type,len,conv;

#### Параметры:

| ххх  | Номер датчика в десятичном формате (DEC), дополненный спереди нулями до трех цифр (001100).                                                                                                                                                                                                 |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| addr | Адрес датчика MODBUS в HEX, без 0x (0FF). 00 или FF — датчик отключен.                                                                                                                                                                                                                      |
| reg  | Адрес регистра датчика, с которого считываются показания настраиваемого датчика, в HEX, без 0x (0000FFFF).                                                                                                                                                                                  |
| cmd  | Код команды чтения, соответствующий прикладному уровню MODBUS, в HEX, без 0х (см. ModbusCommands).                                                                                                                                                                                          |
| type | Тип параметра в HEX, без 0x (см. GenericParamType).                                                                                                                                                                                                                                         |
| len  | <ul> <li>Количество считываемых данных в десятичном формате:</li> <li>132 бит, если cmd = MODBUS_CMD_READ_COILS или cmd = MODBUS_CMD_READ_DISCR_INPUTS;</li> <li>2 или 4 байта (1 или 2 регистра), если cmd = MODBUS_CMD_READ_HOLDING_REGS или cmd = MODBUS_CMD_READ_INPUT_REGS.</li> </ul> |
| conv | Тип преобразования данных (см. ModbusConvTypes).                                                                                                                                                                                                                                            |

**Примечание.** Для команд Read Coils (0x01) и Read Discrete Inputs (0x02) поля **type** и **conv** не учитываются (**type** принимается как GENERIC\_PARAM\_BITFIELD, преобразование выполняется в соответствии со спецификацией протокола).

**Примечание.** Для Read Holding Registers (0x03) и Read Input Registers (0x04) при **len** = 2 поле **conv** не учитывается, преобразование выполняется в coomветствии со спецификацией протокола. Значение параметра **type** = MODBUS\_DATA\_TYPE\_FLOAT является недопустимым.

**Примечание.** Дополнительно на контроллерах АвтоГРАФ-GX возможна установка количества данных **len** в диапазонах:

- 33...255, если **cmd** = MODBUS\_CMD\_READ\_COILS или **cmd** = MODBUS\_CMD\_READ\_DISCR\_INPUTS;
- 6...250 (четные), если **cmd** = MODBUS\_CMD\_READ\_HOLDING\_REGS или **cmd** = MODBUS\_CMD\_READ\_INPUT\_REGS.
  - В данном случае игнорируются значения параметров **type** и **conv** (данные сохраняются в том порядке, в котором приходят от опрашиваемого контроллера). Контроль значений параметра осуществляется при помощи команды MODBUSSENLONGCONTROL. Также в данном случае для параметра доступна только упрощенная версия адаптивной записи (см. MODBUSSENLONGADAPTIVE).

**Примечание.** В случае недопустимых **ххх**, **cmd**, **type**, **len** и **conv** при **addr** не равном 00 или FF контроллер возвращает ответ UNSUPPORTED\_PARAMETER. При **addr** = 00 или **addr** = FF пришедшие параметры сохраняются и ответ возвращается в формате запроса.

**Примечание.** В случае недопустимых **addr** или **reg** контроллер возвращает ответ UNSUPPORTED\_PARAMETER.

#### Пример команды:

MODBUSSEN003=F8,203,3,1,2,1;

#### Пример ответа:

MODBUSSEN003=F8,0203,3,1,2,1;

#### **MODBUSSENCONTROL**

Запрос текущих параметров произвольного датчика на шине RS-485 (MODBUS).

- Доступна через сервер и SMS.
- Версия прошивки: 01.02-а4 и выше.
- Команды запроса: MODBUSSENCONTROL и GMODBUSSENCONTROL. Обе команды работают одинаково, только на запрос.

## Формат команды:

GMODBUSSENCONTROLx;

#### Формат ответа:

MODBUSSENCONTROLx=valid,val;

#### Параметры:

| х     | Номер датчика в десятичном формате (DEC), дополненный спереди нулями до трех цифр (001100).                                                                                                                                                                                                                                                                                                                                                                  |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| valid | Наличие новых данных с момента предыдущего запроса:  • 0 — нет новых данных;  • 1 — новые данные.                                                                                                                                                                                                                                                                                                                                                            |
| val   | <ul> <li>Значение параметра, формат зависит от типа данных:</li> <li>GENERIC_PARAM_UINT — беззнаковое целое число в десятичном формате (uint в DEC);</li> <li>GENERIC_PARAM_INT — знаковое целое число в десятичном формате (int в DEC);</li> <li>GENERIC_PARAM_FLOAT — с десятичной точкой (float) в экспоненциальной форме;</li> <li>GENERIC_PARAM_BITFIELD — беззнаковое целое число в шестнадцатеричном формате (uint в HEX), с префиксом 0х.</li> </ul> |

## Пример команды:

GMODBUSSENCONTROL3;

## Пример ответа:

MODBUSSENCONTROL3=1,-1349;

#### **MODBUSSENPERIOD**

Установка периода записи данных произвольных датчиков на шине RS-485 (MODBUS).

- Доступна через сервер и SMS.
- Версия прошивки: 01.02-а4 и выше.
- Команда запроса: GMODBUSSENPERIOD.

## Формат команды:

MODBUSSENPERIOD=x;

#### Параметры:

| х | Период записи в секундах (03600). 0 — запись не выполняется. |
|---|--------------------------------------------------------------|
|---|--------------------------------------------------------------|

## Пример команды:

MODBUSSENPERIOD=120;

# Пример ответа:

MODBUSSENPERIOD=120;

#### **MODBUSSENPARAMSTIMEOUT**

Установка таймаута запроса короткого параметра на шине RS-485 (MODBUS).

- Доступна через сервер и SMS.
- Версия прошивки: 13.40 и выше.
- Команда запроса: GMODBUSSENPARAMSTIMEOUT.

## Формат команды:

MODBUSSENPARAMSTIMEOUT=x;

#### Параметры:

| х | Таймаут в миллисекундах (060000). |
|---|-----------------------------------|
|---|-----------------------------------|

#### Пример команды:

MODBUSSENPARAMSTIMEOUT=100;

## Пример ответа:

MODBUSSENPARAMSTIMEOUT=100;

#### **MODBUSSENLONGPARAMSTIMEOUT**

Установка таймаута запроса длинного параметра на шине RS-485 (MODBUS).

- Доступна через сервер и SMS.
- Версия прошивки: 13.40 и выше.
- Команда запроса: GMODBUSSENLONGPARAMSTIMEOUT.

## Формат команды:

MODBUSSENLONGPARAMSTIMEOUT=x;

#### Параметры:

| х | Таймаут в миллисекундах (060000). |
|---|-----------------------------------|
|---|-----------------------------------|

#### Пример команды:

MODBUSSENLONGPARAMSTIMEOUT=500;

## Пример ответа:

MODBUSSENLONGPARAMSTIMEOUT=500;

# ${\bf Modbus Cardreader Id Type}$

Формат номера карты.

| MODBUS_ID_TYPE_DEC_POINT = 0u | 0 — десятичный с точкой. |
|-------------------------------|--------------------------|
| MODBUS_ID_TYPE_HEX = 1u       | 1 — шестнадцатеричный.   |
| MODBUS_ID_TYPE_DEC = 2u       | 2 — десятичный.          |

# ModbusCommands

Команды MODBUS.

| MODBUS_CMD_INVALID_LOW = Ou  | Недопустимое значение.                                                  |
|------------------------------|-------------------------------------------------------------------------|
| MODBUS_CMD_READ_COILS        | 1 — Read Coils (0x01) — чтение значений из регистров флагов.            |
| MODBUS_CMD_READ_DISCR_INPUTS | 2 — Read Discrete Inputs (0x02) — чтение значений из дискретных входов. |
| MODBUS_CMD_READ_HOLDING_REGS | 3 — Read Holding Registers (0х03) — чтение значений регистров хранения. |
| MODBUS_CMD_READ_INPUT_REGS   | 4 — Read Input Registers (0x04) — чтение значений из регистров ввода.   |
| MODBUS_CMD_INVALID_HIGH      | Недопустимое значение.                                                  |

# ModbusConvTypes

Типы преобразования.

| MODBUS_CONV_TYPE_INVALID_LOW = 0u   | Недопустимое значение.               |
|-------------------------------------|--------------------------------------|
| MODBUS_CONV_TYPE_AS_IS              | 1 — без преобразования.              |
| MODBUS_CONV_TYPE_SWAP_BYTES_IN_REGS | 2 — перестановка байтов в регистрах. |
| MODBUS_CONV_TYPE_SWAP_REGS          | 3 — перестановка регистров.          |
| MODBUS_CONV_TYPE_REVERSE_BYTES      | 4 — обратный порядок байтов.         |
| MODBUS_CONV_TYPE_INVALID_HIGH       | Недопустимое значение.               |

# Датчики уровня топлива (ДУТ)

| Список команд | Описание                                                                                     |
|---------------|----------------------------------------------------------------------------------------------|
| LLSPERIOD     | Установка периода записи данных с ДУТ.                                                       |
| LLSADDR       | Присвоение адресов всем ДУТ.                                                                 |
| LLSADDRESx    | Присвоение адреса отдельному ДУТ.                                                            |
| LLSSERNUMx    | Установка серийного номера ДУТ.                                                              |
| LLSPINx       | Назначение PIN кода, используемого для расшифровки данных от беспроводных датчиков TKLS-Air. |
| LLSWIDE       | Активация расширенной записи данных ДУТ.                                                     |
| AGHIP         | Активация использования протокола AGHIP.                                                     |
| LLSSOURCE     | Указание источника данных ДУТ.                                                               |
| LLSPARAMS     | Запрос текущих параметров ДУТ.                                                               |

| Список групп параметров | Описание                             |
|-------------------------|--------------------------------------|
| TkAirSecureState        | Статусы шифрования сообщения ТК-Air. |

#### **LLSPERIOD**

Установка периода записи данных с ДУТ.

- Доступна через сервер и SMS.
- Версия прошивки: 01.02-а4 и выше.
- Команда запроса: GLLSPERIOD.

## Формат команды:

LLSPERIOD=x;

#### Параметры:

| х | Период записи в секундах (03600). 0 — запись отключена. |
|---|---------------------------------------------------------|
|---|---------------------------------------------------------|

Примечание. При отправке недопустимого значения параметра в контроллере будет установлено значение 0.

## Пример команды:

LLSPERIOD=30;

#### Пример ответа:

LLSPERIOD=30;

**Примечание.** Не рекомендуется устанавливать период записи данных меньше 10 секунд.

#### **LLSADDR**

Присвоение адресов всем ДУТ.

- Доступна через сервер и SMS.
- Версия прошивки: 01.02-а4 и выше.
- Команда запроса: GLLSADDR.

# Формат команды:

LLSADDR=A1,A2,A3,A4,A5,A6,A7,A8;

#### Параметры:

| A  | Адрес датчика в десятичной системе счисления (1255),      |
|----|-----------------------------------------------------------|
| An | где <b>n</b> — номер датчика (18). 255 — датчик отключен. |

**Примечание.** Необходимо заполнять все 8 полей адресов. Адреса неиспользуемых датчиков необходимо заполнить кодом отключения.

# Пример команды:

LLSADDR=1,2,3,4,255,255,255,255;

# Пример ответа:

LLSADDR=1,2,3,4,255,255,255,255;

#### **LLSADDRES**x

Присвоение адреса отдельному ДУТ.

- Доступна через сервер и SMS.
- Версия прошивки: 01.02-а4 и выше.
- Команда запроса: GLLSADDRESx.

# Формат команды:

LLSADDRESx=A;

#### Параметры:

| х | Номер датчика (18).                                                         |
|---|-----------------------------------------------------------------------------|
| Α | Адрес датчика в десятичной системе счисления (1255). 255 — датчик отключен. |

**Примечание.** При отправке недопустимого значения адреса в контроллере будет установлено значение 255.

# Пример команды:

LLSADDRES1=1;

# Пример ответа:

LLSADDRES1=1;

#### **LLSSERNUM**x

Установка серийного номера ДУТ.

- Датчики с настроенным серийным номером работают по каналу BLE (Bluetooth).
- Доступна через сервер и SMS.
- Версия прошивки: 13.14 и выше.
- Команда запроса: GLLSSERNUMx.

#### Формат команды:

LLSSERNUMx=A;

# Параметры:

| х | Номер датчика (18).                                                                                                                 |
|---|-------------------------------------------------------------------------------------------------------------------------------------|
| A | Серийный номер датчика в десятичной системе счисления (04294967295).  0 — серийный номер не используется при идентификации датчика. |

Примечание. При отправке недопустимого значения адреса в контроллере будет установлено значение 0.

#### Пример команды:

LLSSERNUM1=12000000;

# Пример ответа:

LLSSERNUM1=12000000;

#### **LLSPIN**x

Назначение PIN кода, используемого для расшифровки данных от беспроводных датчиков TKLS-Air.

- Доступна через сервер и SMS.
- Версия прошивки: 13.14 и выше.
- Команда запроса: GLLSPINx.

# Формат команды:

LLSPINx=A;

#### Параметры:

| х | Номер датчика (18).         |
|---|-----------------------------|
| Α | PIN код датчика, 4 символа. |

#### Пример команды:

LLSPIN1=1234;

# Пример ответа:

LLSPIN1=1234;

#### **LLSWIDE**

Активация расширенной записи данных ДУТ.

- Доступна через сервер и SMS.
- Версия прошивки: 01.02-а4 и выше.
- Команда запроса: GLLSWIDE.

# Формат команды:

LLSWIDE=x;

# Параметры:

|   | [1 | Режим записи:                       |
|---|----|-------------------------------------|
| х | -  | • 0 — расширенная запись отключена; |
|   |    | • 1 — расширенная запись включена.  |

Примечание. При отправке недопустимого значения адреса в контроллере будет установлено значение 0.

# Пример команды:

LLSWIDE=1;

# Пример ответа:

LLSWIDE=1;

#### **AGHIP**

Активация использования протокола AGHIP.

- Команда позволяет включить протокол AGHIP для считывания показаний с ДУТ TKLS. Кроме показаний уровня данный протокол позволяет считывать дополнительные параметры работы датчиков: величину отклонения поперечных и продольных осей, а также ускорение, приложенное к датчику.
- Доступна через сервер и SMS.
- Версия прошивки: 01.02-а4 и выше.
- Команда запроса: GAGHIP.

#### Формат команды:

AGHIP=x;

#### Параметры:

|   | Протокол:             |
|---|-----------------------|
| х | • 0 — протокол LLS;   |
|   | • 1 — протокол АGHIP. |

**Примечание.** При отправке недопустимого значения адреса в контроллере будет установлено значение 0.

#### Пример команды:

AGHIP=1;

#### Пример ответа:

AGHIP=1;

# **LLSSOURCE**

Указание источника данных ДУТ.

- Доступна через сервер и SMS.
- Версия прошивки: 01.02-а4 и выше.
- Команда запроса: GLLSSOURCE.

# Формат команды:

LLSSOURCE=x;

# Параметры:

| 7 | ¥ | Источник данных. 0 — шина RS-485. |
|---|---|-----------------------------------|

# Пример команды:

LLSSOURCE=0;

# Пример ответа:

LLSSOURCE=0;

#### **LLSPARAMS**

Запрос текущих параметров ДУТ.

- Доступна через сервер и SMS.
- Версия прошивки: 01.02-а4 и выше.
- Команда запроса: GLLSPARAMS. Команды <u>LLSPARAMS</u> и GLLSPARAMS работают одинаково, только на запрос.

#### Формат команды:

GLLSPARAMSx;

#### Формат ответа:

LLSPARAMSx=a,b,c,d,e;

#### Параметры:

| х | Номер датчика (18).                                                                                        |
|---|------------------------------------------------------------------------------------------------------------|
| a | Адрес датчика (1255). 255 — датчик отключен.                                                               |
| b | Наличие новых данных с момента предыдущего запроса:  • 0 — нет новых данных;  • 1 — новые данные.          |
| С | Уровень топлива, единицы измерения зависят от настроек датчика, целое число.                               |
| d | Угол наклона в градусах (0180), целое число. 255 — нет данных об угле (возможно, отключен протокол AGHIP). |
| е | Температура в °C, целое число.                                                                             |
| f | Состояние расшифровки сообщения (см. TkAirSecureState). Добавлен в версии прошивки 13.14.                  |

#### Пример команды:

GLLSPARAMS1;

### Пример ответа:

LLSPARAMS1=1,1,1267,12,21,1;

**Примечание.** Команда возвращает текущий рабочий адрес датчика. Если перенастроить адрес командой LLSADDR, то команда LLSPARAMS (GLLSPARAMS) может вернуть новый адрес только через 2 секунды. При этом GLLSADDR будет возвращать новый адрес сразу.

**Примечание.** При передаче недопустимого номера датчика  $\mathbf{x}$  контроллер возвращает ответ UNSUPPORTED\_PARAMETER.

# **TkAirSecureState**

Статусы шифрования сообщения ТК-Air.

| TK_AIR_SEQ_INVALID_VALUE = 0 | 0 — не было сигнала.                         |
|------------------------------|----------------------------------------------|
| TK_AIR_OPEN = 1              | 1 — сообщение пришло по открытому каналу.    |
| TK_AIR_SECURE = 2            | 2 — сообщение пришло по шифрованному каналу. |
| TASS_485 = 3                 | 3 — данные получены по кабелю (RS-485).      |
| TK_AIR_UNSEQURE_ERROR = 100  | 100 — ошибка расшифровки.                    |

# Датчики ТКАМ (измерители угла наклона)

| Список команд  | Описание                                                                                  |
|----------------|-------------------------------------------------------------------------------------------|
| TKAM           | Установка периода записи данных с датчиков ТКАМ и присвоение адресов этим датчикам.       |
| TKAMPERIOD     | Установка периода записи данных с датчиков ТКАМ.                                          |
| TKAMSINGLEADDR | Присвоение адреса отдельному датчику ТКАМ.                                                |
| TKAMPARAMS     | Запрос текущих параметров ТКАМ.                                                           |
| TKAMSERNUMx    | Установка серийного номера датчика ТКАМ / ТКАМ-Air.                                       |
| TKAMPINx       | Назначение PIN кода, используемого для расшифровки данных беспроводного датчика ТКАМ-Air. |
| TKAMADDRECx    | Активация расширенной записи TKAM-Air.                                                    |
| TKAMNEWREC     | Выбор записи для сохранения данных с ТКАМ.                                                |

| Список групп параметров | Описание      |
|-------------------------|---------------|
| TkamMsgType             | Набор данных. |

#### **TKAM**

Установка периода записи данных с датчиков ТКАМ и присвоение адресов этим датчикам.

- Доступна через сервер и SMS.
- Версия прошивки: 01.02-а4 и выше.
- Команда запроса: GTKAM.

#### Формат команды:

TKAM=x:Y1,Y2,Y3,Y4,Y5,Y6,Y7,Y8,Y9,Y10,Y11,Y12,Y13,Y14,Y15,Y16;

#### Параметры:

| х  | Период записи в секундах (03600). 0 — запись отключена. Рекомендуется устанавливать период не менее 5 с.                                                                                                                                                                                                                                                        |  |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Yn | Адрес датчика на канале в шестнадцатеричной системе счисления, без 0х (00FF), где <b>n</b> — номер датчика (116). 00 или FF — датчик отключен. Рекомендуется устанавливать адреса в диапазоне C0C7. Можно настроить подключение до 8 датчиков. Необходимо заполнять все 16 полей команды, указав значение 00 или FF в качестве адресов неиспользуемых датчиков. |  |

## Пример команды:

GTKAM=C0,C1,C2,C3,C5,0,0,0,0,0,0,0,0,0,0,0,0;

# Пример ответа:

GTKAM=C0,C1,C2,C3,C5,0,0,0,0,0,0,0,0,0,0,0,0;

#### **TKAMPERIOD**

Установка периода записи данных с датчиков ТКАМ.

- Доступна через сервер и SMS.
- Версия прошивки: 01.02-а4 и выше.
- Команда запроса: GTKAMPERIOD.

# Формат команды:

TKAMPERIOD=x;

#### Параметры:

| ,          | Период записи в секундах (03600). 0 — запись отключена. Рекомендуется |
|------------|-----------------------------------------------------------------------|
| <u> </u> * | устанавливать период не менее 5 с.                                    |

### Пример команды:

TKAMPERIOD=30;

# Пример ответа:

TKAMPERIOD=30;

#### **TKAMSINGLEADDR**

Присвоение адреса отдельному датчику ТКАМ.

- Доступна через сервер и SMS.
- Версия прошивки: 01.02-а4 и выше.
- Команда запроса: GTKAMSINGLEADDR.

# Формат команды:

TKAMSINGLEADDRx=y;

#### Параметры:

| х | Номер датчика (116).                                                                                                                             |  |  |
|---|--------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| у | Адрес датчика в шестнадцатеричной системе счисления, без 0х (00FF). 00 или FF — датчик отключен. Рекомендуется задавать адреса в диапазоне C0C7. |  |  |

**Примечание.** При передаче недопустимого номера датчика или адреса больше FF контроллер возвращает ответ UNSUPPORTED\_PARAMETER.

## Пример команды:

TKAMSINGLEADDR1=CO;

#### Пример ответа:

TKAMSINGLEADDR1=CO;

#### **TKAMPARAMS**

Запрос текущих параметров ТКАМ.

- Доступна через сервер и SMS.
- Версия прошивки: 01.02-а4 и выше.
- Команда запроса: GTKAMPARAMS. Команды <u>TKAMPARAMS</u> и GTKAMPARAMS работают одинаково, только на запрос.

#### Формат команды:

GTKAMPARAMSx;

#### Формат ответа:

TKAMPARAMSx=a,b,c,d,e,f,g1,g2,g3,g4,g5,g6,h,j;

#### Параметры:

| х  | Номер датчика (116).                                                                                                                                                                                      |  |  |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| a  | Адрес датчика в шестнадцатеричной системе, без 0x (C0C7).<br>00 или FF — датчик отключен.                                                                                                                 |  |  |
| b  | <ul> <li>Наличие новых данных с момента предыдущего запроса:</li> <li>0 — с момента последнего запроса новых данных не было;</li> <li>1 — с момента последнего запроса появились новые данные.</li> </ul> |  |  |
| С  | Состояние выхода 1 (0, 1).                                                                                                                                                                                |  |  |
| d  | Состояние выхода 2 (0, 1).                                                                                                                                                                                |  |  |
| e  | Набор данных (см. TkamMsgType).                                                                                                                                                                           |  |  |
| f  | Угол в градусах (0180), с десятичной точкой.                                                                                                                                                              |  |  |
| g1 | Параметр 1, в зависимости от параметра <b>е</b> .                                                                                                                                                         |  |  |
| g2 | Параметр 2, в зависимости от параметра <b>е</b> .                                                                                                                                                         |  |  |
| g3 | Параметр 3, в зависимости от параметра <b>e</b> .                                                                                                                                                         |  |  |
| g4 | Параметр 4, в зависимости от параметра <b>е</b> .                                                                                                                                                         |  |  |
| g5 | Параметр 5, в зависимости от параметра <b>е</b> . Добавлен в версии прошивки 13.21.                                                                                                                       |  |  |
| g6 | Вибрация беспроводного датчика. Добавлена в версии прошивки 13.31.                                                                                                                                        |  |  |
| j  | Состояние расшифровки сообщения (см. TkAirSecureState). Добавлено в версии прошивки 13.14.                                                                                                                |  |  |

**Примечание.** Команда возвращает в параметре **a** текущий рабочий адрес. Если переназначить адрес датчика командами TKAMSINGLEADDR или TKAM, то команда TKAMPARAMS (GTKAMPARAMS) может вернуть новый адрес только через 2 секунды после смены. При этом команды GTKAMSINGLEADDR и GTKAM будут возвращать новый адрес.

**Примечание.** При передаче недопустимого номера датчика контроллер возвращает ответ UNSUPPORTED\_PARAMETER.

| _ |   |       |     |    |    |      |   |      |
|---|---|-------|-----|----|----|------|---|------|
| п | n | 1/1   | RΛ  | Δn | KO | MA   | ч | ıьı. |
|   |   | ' 7 1 | IAI | CD | NU | IVIC | п | LDI. |

TKAMPARAMS1;

# Пример ответа:

TKAMPARAMS2=FF,1,0,0,2,1.0,27,4,-1,224,-56,0,2;

#### **TKAMSERNUMX**

Установка серийного номера датчика TKAM / TKAM-Air.

- Датчики с настроенным серийным номером работают по каналу BLE (Bluetooth).
- Доступна через сервер и SMS.
- Версия прошивки: 13.14 и выше.
- Команда запроса: GTKAMSERNUMx.

#### Формат команды:

TKAMSERNUMx=A;

# Параметры:

| х | Номер датчика (0116).                                                                                                                |  |  |
|---|--------------------------------------------------------------------------------------------------------------------------------------|--|--|
| A | Серийный номер датчика в десятичной системе счисления.  0 или 4294967295 — серийный номер не используется при идентификации датчика. |  |  |

Примечание. При отправке недопустимого значения адреса в контроллере будет установлено значение 0.

#### Пример команды:

TKAMSERNUM01=12000000;

# Пример ответа:

TKAMSERNUM01=12000000;

#### **TKAMPINX**

Назначение PIN кода, используемого для расшифровки данных беспроводного датчика ТКАМ-Air.

- Доступна через сервер и SMS.
- Версия прошивки: 13.14 и выше.
- Команда запроса: GTKAMPINx.

# Формат команды:

TKAMPINx=A;

#### Параметры:

| х | Номер датчика (0116).       |
|---|-----------------------------|
| Α | PIN код датчика, 4 символа. |

#### Пример команды:

TKAMPIN01=1234;

# Пример ответа:

TKAMPIN01=1234;

#### **TKAMADDRECx**

Активация расширенной записи TKAM-Air.

- Доступна через сервер и SMS.
- Версия прошивки: 13.31 и выше.
- Команда запроса: GTKAMADDREC.

# Формат команды:

TKAMADDRECx=y;

#### Параметры:

| х | Номер датчика (0116), дополненный нулем до 2 символов.                                                                                                                                                                                                        |  |  |
|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| у | <ul> <li>Режим дополнительной записи:</li> <li>0 — расширенная запись отключена;</li> <li>1 — в дополнение к записи «Данные с BLE(TK-Air)» сохраняется дополнительная запись типа «Угол наклона (в градусах), температура (в °С), вибрация (в %)».</li> </ul> |  |  |

**Примечание.** При передаче недопустимого номера датчика контроллер возвращает ответ UNSUPPORTED\_PARAMETER.

# Пример команды:

TKAMADDREC01=1;

# Пример ответа:

TKAMADDREC01=1;

#### **TKAMNEWREC**

Выбор записи для сохранения данных с ТКАМ.

- Доступна через сервер и SMS.
- Версия прошивки: 13.38 и выше.
- Команда запроса: GTKAMNEWREC.

# Формат команды:

TKAMNEWREC=x;

#### Параметры:

|   | Запись, в которую сохраняются параметры:                     |
|---|--------------------------------------------------------------|
| x | • 0 — старая запись ТКАМ (режим совместимости со старым ПО); |
|   | • 1 — новая запись.                                          |

# Пример команды:

TKAMNEWREC=1;

# Пример ответа:

TKAMNEWREC=1;

# TkamMsgType

Набор данных.

| TKAM_MSG_TYPE_ANGLE_TEMP_VIBRATION = 0     | 0 — угол наклона (в градусах), температура (в °C), вибрация (в %).                                                                                                       |
|--------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TKAM_MSG_TYPE_ANGLE_ROLL_PITCH = 1         | 1 — угол наклона (в градусах), крен (в градусах, —9090), тангаж<br>(в градусах, —9090).                                                                                  |
| TKAM_MSG_TYPE_AMWL_BLE = 2                 | 2 — данные с BLE (TK-Air): угол наклона (в градусах), температура (в °C), крен (в градусах, —9090), тангаж (в градусах, —9090), напряжение батареи (16 мВ на бит), RSSI. |
| TKAM_MSG_TYPE_ANGLE_TEMP_VIBRATION_BLE = 3 | 3— данные с BLE (устаревший формат): угол (в градусах), температура (в °C), вибрация (в %).                                                                              |
| TKAM_MSG_TYPE_ESCORT_BLE = 4               | 4 — данные с датчика угла Эскорт BLE: угол (в градусах), температура (в °C), состояние события, напряжение батареи, RSSI.                                                |
| TKAM_AMWL_ROTATION = 5u                    | 5 — данные с BLE (ТК-Air в режиме вращения): количество оборотов, скорость вращения (об/мин), резерв, напряжение батареи (16 мВ на бит), RSSI.                           |

# Датчики веса и пассажиропотока

| Список команд    | Описание                                                                        |  |  |
|------------------|---------------------------------------------------------------------------------|--|--|
| PPADDR           | Присвоение адресов датчикам пассажиропотока и веса.                             |  |  |
| PPWEIGHTADDR     | Присвоение адреса отдельному датчику пассажиропотока и веса.                    |  |  |
| PPPERIOD         | Установка периода записи данных с датчиков веса и пассажиропотока.              |  |  |
| PPPARAMS         | Запрос данных с подключенного датчика веса или пассажиропотока.                 |  |  |
| PASSFLOWADDR     | Присвоение адреса датчику пассажиропотока.                                      |  |  |
| PASSFLOWPERIOD   | Установка периода сохранения записей пассажиропотока.                           |  |  |
| PASSFLOWSYSTEM   | Выбор используемой системы контроля пассажиропотока.                            |  |  |
| PASSFLOWSOURCE   | Выбор шины RS-485, используемой для работы с датчиками пассажиропотока.         |  |  |
| PASSFLOWCONV     | Преобразование данных, полученных от датчиков пассажиропотока.                  |  |  |
| PASSFLOWPARAMS   | Настройка текущих параметров датчика пассажиропотока.                           |  |  |
| DOORSTATESRC     | Выбор источника информации о состоянии двери.                                   |  |  |
| DOOROPENINSTATE  | Установка состояния источника, которое соответствует открытому состоянию двери. |  |  |
| DOORSTATECONTROL | Передача информации о состоянии двери в систему контроля пассажиропотока.       |  |  |
| DOORCLOSETIMEOUT | Установка задержки закрытия двери.                                              |  |  |

| Список групп параметров | Описание                                 |
|-------------------------|------------------------------------------|
| PassFlowDoorStateSrc    | Источники информации о состоянии дверей. |
| PassFlowErr             | Коды ошибок для состояния дверей.        |

#### **PPADDR**

Присвоение адресов датчикам пассажиропотока и веса.

- Доступна через сервер и SMS.
- Версия прошивки: 13.17 и выше.
- Команда запроса: GPPADDR.

#### Формат команды:

PPADDR=a1,a2,a3,a4,a5,a6,a7,a8,a9,a10,a11,a12,a13,a14,a15,a16;

#### Параметры:

| an | Адрес датчика на канале <b>n</b> (116) в десятичной системе счисления (0255). Необходимо заполнять все 16 полей команды, указав значение 0 или 255 в качестве адресов неиспользуемых датчиков.  • 0 или 255 — датчик отключен;  • 1229, 246254 — адреса для датчиков пассажиропотока;  • 230245 — адреса для датчиков веса. |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

#### Пример команды:

PPADDR=220,221,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;

#### Пример ответа:

PPADDR=220,221,0,0,0,0,0,0,0,0,0,0,0,0,0,0;

#### **PPWEIGHTADDR**

Присвоение адреса отдельному датчику пассажиропотока и веса.

- Доступна через сервер и SMS.
- Версия прошивки: 13.17 и выше.
- Команда запроса: GPPWEIGHTADDR.

# Формат команды:

PPWEIGHTADDRx=addr;

#### Параметры:

| х    | Номер датчика (116).                                                                                                                                                                             |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| addr | Адрес датчика на канале <b>х</b> в десятичной системе счисления (0255):  • 0 или 255 — датчик отключен;  • 1229, 246254 — адрес для датчика пассажиропотока;  • 230245 — адрес для датчика веса. |

# Пример команды:

PPWEIGHTADDR1=220;

# Пример ответа:

PPWEIGHTADDR1=220;

#### **PPPERIOD**

Установка периода записи данных с датчиков веса и пассажиропотока.

- Доступна через сервер и SMS.
- Версия прошивки: 13.17 и выше.
- Команда запроса: GPPPERIOD.

# Формат команды:

PPPERIOD=period;

# Параметры:

| period | Период записи данных в секундах (03600). 0 — отключает запись данных по |
|--------|-------------------------------------------------------------------------|
|        | периоду. Рекомендуется устанавливать период не менее 30 с.              |

# Пример команды:

PPPERIOD=30;

# Пример ответа:

PPPERIOD=30;

#### **PPPARAMS**

Запрос данных с подключенного датчика веса или пассажиропотока.

- Доступна через сервер и SMS.
- Версия прошивки: 13.17 и выше.
- Команда запроса: GPPPARAMS. Команды <u>PPPARAMS</u> и GPPPARAMS работают одинаково, только на запрос.

#### Формат команды:

GPPPARAMSx;

## Формат ответа:

PPPARAMSx=addr,new,mode,id,status,in,out,weight;

#### Параметры:

| х      | Номер датчика (116).                                                                                                                                                                                      |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| addr   | Адрес датчика в десятичной системе счисления (0255):  • 0 или 255 — датчик отключен;  • 1229, 246254 — адреса для датчиков пассажиропотока;  • 230245 — адреса для датчиков веса.                         |
| new    | <ul> <li>Наличие новых данных с момента предыдущего запроса:</li> <li>0 — с момента последнего запроса новых данных не было;</li> <li>1 — с момента последнего запроса появились новые данные.</li> </ul> |
| mode   | Режим работы датчика, в шестнадцатеричной системе, без 0х.                                                                                                                                                |
| id     | Идентификатор последнего сохраненного пакета, в десятичной системе счисления (0255).                                                                                                                      |
| status | Статус датчика, в шестнадцатеричной системе, без 0х.                                                                                                                                                      |
| in     | Количество вошедших пассажиров, в десятичной системе счисления. Для датчика веса всегда равен 0.                                                                                                          |
| out    | Количество вышедших пассажиров, в десятичной системе счисления. Для датчика веса всегда равен 0.                                                                                                          |
| weight | Вес в виде числа с плавающей точкой. Для датчика пассажиропотока всегда равен 0.                                                                                                                          |

#### Пример команды:

GPPPARAMS1;

### Пример ответа:

PPPARAMS1=220,1,A1,167,0002,5,7,0.000000;

**Примечание.** Если контроллер настроен на работу в режиме TKIA, работающего с датчиком веса, то запрос GPPPARAMS1; будет возвращать данные, полученные от него.

#### **PASSFLOWADDR**

Присвоение адреса датчику пассажиропотока.

- Доступна через сервер и SMS.
- Версия прошивки: 13.33 и выше.
- Команда запроса: GPASSFLOWADDR.

# Формат команды:

PASSFLOWADDRx=y;

#### Параметры:

| х | Номер датчика (116), дополненный нулем до двух знаков.                                   |
|---|------------------------------------------------------------------------------------------|
| у | Адрес датчика (0FF) в шестнадцатеричной системе, без 0х.<br>00 или FF — датчик отключен. |

#### Пример команды:

PASSFLOWADDR05=A0;

# Пример ответа:

PASSFLOWADDR05=A0;

**Примечание.** При использовании протокола Streamax адреса должны находиться в диапазоне А0...А7.

#### **PASSFLOWPERIOD**

Установка периода сохранения записей пассажиропотока.

- Доступна через сервер и SMS.
- Версия прошивки: 13.33 и выше.
- Команда запроса: GPASSFLOWPERIOD.

#### Формат команды:

PASSFLOWPERIOD=x;

#### Параметры:

| x | Период записи в секундах (03600). 0 — запись по периоду отключена. |
|---|--------------------------------------------------------------------|
|---|--------------------------------------------------------------------|

# Пример команды:

PASSFLOWPERIOD=60;

# Пример ответа:

PASSFLOWPERIOD=60;

**Примечание.** При наличии ненулевых данных о входящих/выходящих пассажирах выполняется внеочередная запись.

#### **PASSFLOWSYSTEM**

Выбор используемой системы контроля пассажиропотока.

- Доступна через сервер и SMS.
- Версия прошивки: 13.33 и выше.
- Команда запроса: GPASSFLOWSYSTEM.

# Формат команды:

PASSFLOWSYSTEM=x;

#### Параметры:

| х | Используемая система контроля пассажиропотока:                    |
|---|-------------------------------------------------------------------|
|   | • 24 — система, работающая по протоколу Streamax-APC;             |
|   | • 2В — система, работающая по протоколу ПП-01;                    |
|   | • прочее — работа с системами контроля пассажиропотока отключена. |

# Пример команды:

PASSFLOWSYSTEM=2B;

#### Пример ответа:

PASSFLOWSYSTEM=2B;

**Примечание.** Работа с системой 2В совместно с другой периферией на шине невозможна! Работа с системой 24 совместно с другой периферией на шине нежелательна!

#### **PASSFLOWSOURCE**

Выбор шины RS-485, используемой для работы с датчиками пассажиропотока.

- Доступна через сервер и SMS.
- Версия прошивки: 13.33 и выше.
- Команда запроса: GPASSFLOWSOURCE.

#### Формат команды:

PASSFLOWSOURCE=id;

#### Параметры:

| id | Номер шины RS-485, используемой для работы с датчиками пассажиропотока: |
|----|-------------------------------------------------------------------------|
|    | • 0 — работа с датчиками пассажиропотока отключена;                     |
|    | • 1 — RS-485 (1);<br>• 2 — RS-485 (2).                                  |
|    | • 2 — N3-403 (2).                                                       |

# Пример команды:

PASSFLOWSOURCE=1;

#### Пример ответа:

PASSFLOWSOURCE=1;

**Примечание.** На устройствах с одной шиной RS-485 команда <u>PASSFLOWSOURCE</u>=2; отключает работу с датчиками пассажиропотока.

#### **PASSFLOWCONV**

Преобразование данных, полученных от датчиков пассажиропотока.

- Доступна через сервер и SMS.
- Версия прошивки: 13.33 и выше.
- Команда запроса: GPASSFLOWCONV.

# Формат команды:

PASSFLOWCONV=x;

# Параметры:

| x | Способ преобразования данных, полученных от датчиков пассажиропотока:  • 0 — без преобразования; |
|---|--------------------------------------------------------------------------------------------------|
|   | • 1 — обратный порядок байтов.                                                                   |

#### Пример команды:

PASSFLOWCONV=1;

# Пример ответа:

PASSFLOWCONV=1;

**Примечание.** Работает только для протокола ПП-01 (PASSFLOWSYSTEM=2B;).

#### **PASSFLOWPARAMS**

Настройка текущих параметров датчика пассажиропотока.

- Доступна через сервер и SMS.
- Версия прошивки: 13.33 и выше.
- Команда запроса: GPASSFLOWPARAMS. Команды <u>PASSFLOWPARAMS</u> и GPASSFLOWPARAMS работают одинаково, только на запрос.

# Формат команды:

PASSFLOWPARAMSx=y,z,a,b,c;

## Параметры:

| х | Номер датчика (116).                                                                                                                                                                                      |
|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| у | Адрес датчика в шестнадцатеричной системе, без 0x (0FF).<br>00 или FF — датчик отключен.                                                                                                                  |
| z | <ul> <li>Наличие новых данных с момента предыдущего запроса:</li> <li>0 — с момента последнего запроса новых данных не было;</li> <li>1 — с момента последнего запроса появились новые данные.</li> </ul> |
| a | Количество вошедших пассажиров с момента предыдущего запроса.                                                                                                                                             |
| b | Количество вышедших пассажиров с момента предыдущего запроса.                                                                                                                                             |
| c | Статус (битовое поле в НЕХ):  • бит 0001 — состояние двери: 0 — закрыта, 1 — открыта;  • биты 0С00 — возможная ошибка датчика (см. PassFlowErr).                                                          |

#### Пример команды:

GPASSFLOWPARAMS1;

#### Пример ответа:

PASSFLOWPARAMS1=A0,1,10,5,1;

#### **DOORSTATESRC**

Выбор источника информации о состоянии двери.

- Доступна через сервер и SMS.
- Версия прошивки: 13.35 и выше.
- Команда запроса: GDOORSTATESRC.

# Формат команды:

DOORSTATESRCx=src;

#### Параметры:

| х   | Номер датчика (0116).                                             |
|-----|-------------------------------------------------------------------|
| src | Источник информации о состоянии двери (см. PassFlowDoorStateSrc). |

#### Пример команды:

DOORSTATESRC01=1;

# Пример ответа:

DOORSTATESRC01=1;

**Примечание.** Работает только для протокола Streamax.

#### **DOOROPENINSTATE**

Установка состояния источника, которое соответствует открытому состоянию двери.

- Доступна через сервер и SMS.
- Версия прошивки: 13.35 и выше.
- Команда запроса: GDOOROPENINSTATE.

#### Формат команды:

DOOROPENINSTATEx=state;

#### Параметры:

| х     | Номер датчика (0116).                                                     |
|-------|---------------------------------------------------------------------------|
| state | Состояние источника, соответствующее открытому состоянию двери (0 или 1). |

#### Пример команды:

DOOROPENINSTATE03=0;

#### Пример ответа:

DOOROPENINSTATE03=0;

**Примечание.** Работает только для протокола Streamax.

**Примечание.** Настройка не имеет силы при использовании флага движения в качестве источника информации о состоянии двери.

#### **DOORSTATECONTROL**

Передача информации о состоянии двери в систему контроля пассажиропотока.

- Доступна через сервер и SMS.
- Версия прошивки: 13.35 и выше.
- Команда запроса: GDOORSTATECONTROL.

# Формат команды:

DOORSTATECONTROLx=state;

# Параметры:

| х     | Номер датчика (0116).                                                                                                                                |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| state | Передача информации о состоянии двери в систему контроля пассажиропотока:  • 0 — не передавать данные в систему;  • 1 — передавать данные в систему. |

# Пример команды:

DOORSTATECONTROLO2=1;

# Пример ответа:

DOORSTATECONTROLO2=1;

**Примечание.** Работает только для протокола Streamax.

#### **DOORCLOSETIMEOUT**

Установка задержки закрытия двери.

- Доступна через сервер и SMS.
- Версия прошивки: 13.35 и выше.
- Команда запроса: GDOORCLOSETIMEOUT.

# Формат команды:

DOORCLOSETIMEOUT=delay;

#### Параметры:

| I OPIAV | Задержка между получением информации о закрытии дверей и применением состояния «Закрыто», в секундах (060). |
|---------|-------------------------------------------------------------------------------------------------------------|
|         | состояния «Закрыто», в секундах (ооо).                                                                      |

# Пример команды:

DOORCLOSETIMEOUT=10;

# Пример ответа:

DOORCLOSETIMEOUT=10;

**Примечание.** Работает только для протокола Streamax.

# **PassFlowDoorStateSrc**

Источники информации о состоянии дверей.

| PASS_FLOW_DOOR_STATE_SRC_MOTION = 0u | 0 — движение. |
|--------------------------------------|---------------|
| PASS_FLOW_DOOR_STATE_SRC_INPUT_1     | 1 — вход 1.   |
| PASS_FLOW_DOOR_STATE_SRC_INPUT_2     | 2 — вход 2.   |
| PASS_FLOW_DOOR_STATE_SRC_INPUT_3     | 3 — вход 3.   |
| PASS_FLOW_DOOR_STATE_SRC_INPUT_4     | 4 — вход 4.   |
| PASS_FLOW_DOOR_STATE_SRC_INPUT_5     | 5 — вход 5.   |
| PASS_FLOW_DOOR_STATE_SRC_INPUT_6     | 6 — вход 6.   |
| PASS_FLOW_DOOR_STATE_SRC_INPUT_7     | 7 — вход 7.   |
| PASS_FLOW_DOOR_STATE_SRC_INPUT_8     | 8 — вход 8.   |

# **PassFlowErr**

Коды ошибок для состояния дверей.

| PASS_FLOW_ERR_NO = Ou        | 0 — нет ошибок.              |
|------------------------------|------------------------------|
| PASS_FLOW_ERR_DOOR_CLOSING   | 1 — ошибка закрытия двери.   |
| PASS_FLOW_ERR_SENSOR_MALFUNC | 2 — возможен дефект датчика. |
| PASS_FLOW_ERR_SABOTAGE       | 3 — возможен саботаж.        |

# Топливозаправщик

| Список команд | Описание                                                                                                 |
|---------------|----------------------------------------------------------------------------------------------------------|
| TRKADDR       | Установка сетевых адресов топливораздаточных контроллеров.                                               |
| \$FUEL        | Запрос отчета о последней заправке с топливораздаточного контроллера с заданным сетевым адресом.         |
| TRKCONTROL    | Запрос отчета о последней заправке с топливораздаточного контроллера на заданном канале.                 |
| LASTTRK       | Запрос отчета о последней заправке с топливораздаточного контроллера с заданным сетевым адресом.         |
| ZAPRAV        | Запрос отчета о последней заправке с топливораздаточного контроллера (ТРК), работающего в режиме ПОРТ-3. |

#### **TRKADDR**

Установка сетевых адресов топливораздаточных контроллеров.

- Доступна через сервер и SMS.
- Версия прошивки: AGXX-01.12 и выше.
- Команда запроса: GTRKADDR.

## Формат команды:

TRKADDR=A1,A2,A3,A4,A5,A6,A7,A8,A9,A10,A11,A12,A13,A14,A15,A16;

#### Параметры:

| An | Адрес топливораздаточного контроллера на канале <b>n</b> (116), в шестнадцатеричной системе счисления, без 0х (0FF).  00 или FF — контроллер отключен. Для работы с TPK TKFC рекомендуется задавать адрес в диапазоне D0D7. Адрес F9 используется для связи с ПОРТ-3, КУСС, а также для TPK TKFC, работающим в режиме ПОРТ-3. |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | Можно настроить подключение до 8 ТРК. Необходимо заполнять все 16 полей команды, указав значение 00 или FF в качестве адресов неиспользуемых ТРК.                                                                                                                                                                             |

## Пример команды:

## Пример ответа:

#### \$FUEL

Запрос отчета о последней заправке с топливораздаточного контроллера с заданным сетевым адресом.

- Доступна через сервер и SMS.
- Версия прошивки: AGXX-01.12 и выше.
- Команда запроса: G\$FUEL. Команды \$FUEL и G\$FUEL работают одинаково, на запрос.

#### Формат команды:

G\$FUEL=addr;

## Параметры:

| addr | Сетевой адрес топливораздаточного контроллера, в шестнадцатеричной системе счисления, без 0х (00FF). Адрес F9 используется для связи с ПОРТ-3, КУСС, а также для ТРК ТКЕС, работающим в режиме ПОРТ-3. |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      | для ТРК ТКFC, работающим в режиме ПОРТ-3.                                                                                                                                                              |

#### Формат ответа:

\$FUEL=id,addr,volume,duration,card1ID,card2ID;

## Параметры:

| id       | Уникальный номер заправки, в десятичной системе счисления (065535).<br>65535— заправок не было.                                                                                                        |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| addr     | Сетевой адрес топливораздаточного контроллера, в шестнадцатеричной системе счисления, без 0х (00FF). Адрес F9 используется для связи с ПОРТ-3, КУСС, а также для ТРК ТКFC, работающим в режиме ПОРТ-3. |
| volume   | Объем заправки, в миллилитрах.                                                                                                                                                                         |
| duration | Продолжительность заправки, в секундах.                                                                                                                                                                |
| card1ID  | Идентификатор заправщика, в шестнадцатеричной системе счисления, без 0х.                                                                                                                               |
| card2ID  | Идентификатор водителя, в шестнадцатеричной системе счисления, без 0х.                                                                                                                                 |

#### Пример команды:

G\$FUEL=D0;

#### Пример ответа:

\$FUEL=245,D0,55556,210,7b8152,56de77;

#### **TRKCONTROL**

Запрос отчета о последней заправке с топливораздаточного контроллера на заданном канале.

- Доступна через сервер и SMS.
- Версия прошивки: AGXX-01.12 и выше.
- Команда запроса: GTRKCONTROL. Команды  $\overline{\text{TRKCONTROL}}$  и GTRKCONTROL работают одинаково, на запрос.

#### Формат команды:

GTRKCONTROLx;

## Параметры:

| x | Номер канала топливораздаточного контроллера (016):  • 0 — запрос отчета с ТРК, работающего в режиме ПОРТ-3; |
|---|--------------------------------------------------------------------------------------------------------------|
|   | • 116 — запрос отчета с ТРК ТКРС.                                                                            |

#### Формат ответа:

TRKCONTROLx=addr,new,id,volume,duration,card1ID,card2ID;

#### Параметры:

| х        | Номер канала топливораздаточного контроллера (016):  • 0 — запрос отчета с ТРК, работающего в режиме ПОРТ-3;  • 116 — запрос отчета с ТРК ТКРС.                                       |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| addr     | Сетевой адрес топливораздаточного контроллера, в шестнадцатеричной системе счисления, без 0х. 00 или FF — контроллер отключен. При запросе канала 0 адрес всегда возвращается как F9. |
| new      | Наличие новых данных с момента предыдущего запроса:  • 0 — с момента последнего запроса новых данных не было;  • 1 — с момента последнего запроса появились новые данные.             |
| id       | Уникальный номер заправки, в десятичной системе счисления (065535).<br>65535— заправок не было.                                                                                       |
| volume   | Объем заправки, в миллилитрах.                                                                                                                                                        |
| duration | Продолжительности заправки, в секундах.                                                                                                                                               |
| card1ID  | Идентификатор заправщика, в шестнадцатеричной системе счисления, без 0х.                                                                                                              |
| card2ID  | Идентификатор водителя, в шестнадцатеричной системе счисления, без 0х.                                                                                                                |

#### Пример команды:

GTRKCONTROL1;

#### Пример ответа:

TRKCONTROL1=D0,1,204,55556,210,7b8152,56de77;

#### **LASTTRK**

Запрос отчета о последней заправке с топливораздаточного контроллера с заданным сетевым адресом.

- Доступна через сервер и SMS.
- Версия прошивки: 13.17 и выше.
- Команды запроса: GLASTTRK, LASTTRK. Обе команды работают одинаково, только на запрос.

## Формат команды:

GLASTTRK=addr;

#### Параметры:

| <b>C</b> етевой адрес топливораздаточного контролл <b>addr</b> счисления, без 0х (0FF). Адрес F9 используетс для TPK TKFC, работающим в режиме ПОРТ-3. |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|--------------------------------------------------------------------------------------------------------------------------------------------------------|--|

#### Формат ответа:

LASTTRK=id,addr,volume,duration,card1ID,card2ID;

#### Параметры:

| id       | Уникальный номер заправки, в десятичной системе счисления (065535).<br>65535— заправок не было.                                                                                                                                                                |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| addr     | Сетевой адрес топливораздаточного контроллера, в шестнадцатеричной системе счисления, без 0х (0FF). Адрес F9 используется для связи с ПОРТ-3, КУСС, а также для ТРК ТКFC, работающим в режиме ПОРТ-3.                                                          |
| volume   | Объем заправки, в миллилитрах.                                                                                                                                                                                                                                 |
| duration | Продолжительность заправки, в секундах.                                                                                                                                                                                                                        |
| card1ID  | Идентификатор заправщика, в шестнадцатеричной системе счисления, без 0х. Если режим отпуска топлива, заданный в ТРК, не требует карты заправщика после перезагрузки контроллера или заправки не было, то в ответе на команду вернется значение FFFFFFFFFFFFFF. |
| card2ID  | Идентификатор водителя, в шестнадцатеричной системе счисления, без 0х. Если после перезагрузки контроллера заправки еще не было, то в ответе на команду вернется значение FFFFFFFFFFFFFF.                                                                      |

#### Пример команды:

GLASTTRK=D0;

## Пример ответа:

LASTTRK=6550,D0,20550,218,7b8152,56de77;

#### **ZAPRAV**

Запрос отчета о последней заправке с топливораздаточного контроллера (ТРК), работающего в режиме ПОРТ-3.

- Доступна через сервер и SMS.
- Версия прошивки: 13.17 и выше.
- Команды запроса: GZAPRAV, ZAPRAV. Обе команды работают одинаково, на запрос.

## Формат команды:

**GZAPRAV**;

## Формат ответа:

ZAPRAV=new,id,0,vehID,volume,duration;

#### Параметры:

| new      | Факт выполнения заправки за время работы ТРК:  • 0 — за время работы заправок не было;  • 1 — за время работы заправки были. |
|----------|------------------------------------------------------------------------------------------------------------------------------|
| id       | Уникальный номер заправки, в десятичной системе счисления (065535). 65535— заправок не было.                                 |
| vehID    | Идентификатор заправленной техники, в десятичной системе счисления.                                                          |
| volume   | Объем заправки, в миллилитрах.                                                                                               |
| duration | Продолжительности заправки, в секундах.                                                                                      |

#### Пример команды:

ZAPRAV;

## Пример ответа:

ZAPRAV=1,3480,0,5687,-1,13000,306;

# СКЗ (система контроля загрузки)

| Список команд  | Описание                                                                 |
|----------------|--------------------------------------------------------------------------|
| TKKZ           | Установка периода записи данных с датчиков ТККZ и присвоение им адресов. |
| TKKZPERIOD     | Установка периода записи данных с датчиков TKKZ.                         |
| TKKZSINGLEADDR | Присвоение адреса отдельному датчика TKKZ.                               |
| TKKZPARAMS     | Запрос текущих параметров датчика TKKZ.                                  |

#### **TKKZ**

Установка периода записи данных с датчиков TKKZ и присвоение им адресов.

- Доступна через сервер и SMS.
- Версия прошивки: 01.02-а4 и выше.
- Команда запроса: GTKKZ.

## Формат команды:

TKKZ=x:Y1,Y2,Y3,Y4,Y5,Y6,Y7,Y8,Y9,Y10,Y11,Y12,Y13,Y14,Y15,Y16;

#### Параметры:

| х  | Период записи в секундах (03600). $\mathbf{x} = 0$ — запись отключена. Рекомендуется устанавливать период не менее 5 с.                                                                                                                                                                                    |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Yn | Адрес датчика, в шестнадцатеричной системе счисления, без 0х (00FF), где <b>n</b> — номер датчика (116). 00 или FF — датчик отключен. Рекомендуется устанавливать адреса в диапазоне B0B7. Можно настроить до 8 датчиков. Необходимо заполнять все 16 полей, указав 00 или FF для неиспользуемых датчиков. |

## Пример команды:

TKKZ=60:B0,B1,B2,B3,00,00,00,00,00,00,00,00,00,00,00,00;

#### Пример ответа:

TKKZ=60:B0,B1,B2,B3,00,00,00,00,00,00,00,00,00,00,00;

#### **TKKZPERIOD**

Установка периода записи данных с датчиков ТККZ.

- Доступна через сервер и SMS.
- Версия прошивки: 01.02-а4 и выше.
- Команда запроса: GTKKZPERIOD.

## Формат команды:

TKKZPERIOD=x;

#### Параметры:

| $\mathbf{x}$ Период записи в секундах (03600). $\mathbf{x} = 0$ — запись отключена. Рекомендуется устанавливать период не менее 5 с. |  |
|--------------------------------------------------------------------------------------------------------------------------------------|--|
|--------------------------------------------------------------------------------------------------------------------------------------|--|

## Пример команды:

TKKZPERIOD=120;

## Пример ответа:

TKKZPERIOD=120;

#### **TKKZSINGLEADDR**

Присвоение адреса отдельному датчика ТККZ.

- Доступна через сервер и SMS.
- Версия прошивки: 01.02-а4 и выше.
- Команда запроса: GTKKZSINGLEADDR.

## Формат команды:

TKKZSINGLEADDRx=y;

#### Параметры:

| х | Номер датчика (116).                                                                                                                                   |
|---|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| у | Адрес датчика, в шестнадцатеричной системе счисления, без 0х (00FF). 00 или FF — датчик отключен. Рекомендуется устанавливать адреса в диапазоне B0B7. |

**Примечание.** При передаче недопустимого номера датчика или адреса, превышающего значение FF, контроллер возвращает ответ UNSUPPORTED\_PARAMETER.

## Пример команды:

TKKZSINGLEADDR1=B7;

## Пример ответа:

TKKZSINGLEADDR1=B7;

#### **TKKZPARAMS**

Запрос текущих параметров датчика ТККZ.

- Доступна через сервер и SMS.
- Версия прошивки: 01.02-а4 и выше.
- Команды запроса: <u>TKKZPARAMS</u>, GTKKZPARAMS. Обе команды работают одинаково, только на запрос.

#### Формат запроса:

GTKKZPARAMSx;

## Формат ответа:

TKKZPARAMSx=a,b,c,d,e,f,g;

#### Параметры:

| х | Номер датчика (116).                                                                                                                                                                                      |
|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| a | Адрес датчика, в шестнадцатеричной системе счисления, без 0х (В0В7).<br>00 или FF — датчик отключен.                                                                                                      |
| b | <ul> <li>Наличие новых данных с момента предыдущего запроса:</li> <li>0 — с момента последнего запроса новых данных не было;</li> <li>1 — с момента последнего запроса появились новые данные.</li> </ul> |
| С | Вес, в кг (целое число).                                                                                                                                                                                  |
| d | Частота, в Гц (целое число).                                                                                                                                                                              |
| е | Код ошибки, в шестнадцатеричной системе счисления, без 0х (см. формат записи 67 «Запись с датчика нагрузки на ось (колесо)»).                                                                             |
| f | Состояние входа In0 (см. формат записи 67 «Запись с датчика нагрузки на ось (колесо)»).                                                                                                                   |
| g | Состояние светофора (см. формат записи 67 «Запись с датчика нагрузки на ось (колесо)»).                                                                                                                   |

**Примечание.** Команда возвращает текущий рабочий адрес датчика. Если переназначить адрес командами TKKZSINGLEADDR или TKKZ, то команда GTKKZPARAMSх может вернуть новый адрес только через 2 секунды. При этом команды GTKKZSINGLEADDR и GTKKZ будут возвращать новый адрес сразу.

**Примечание.** При передаче недопустимого номера датчика контроллер возвращает ответ UNSUPPORTED\_PARAMETER.

#### Пример команды:

GTKKZPARAMS1;

#### Пример ответа:

TKKZPARAMS1=B0,1,54,1056,01,1,0;

# Шина 1-wire

| Список команд      | Описание                                                                |
|--------------------|-------------------------------------------------------------------------|
| ONLYTEMP           | Выбор режима работы с единственным датчиком температуры на шине 1-Wire. |
| TEMPADDR           | Присвоение адресов датчикам температуры на шине 1-Wire.                 |
| TEMPPERIOD         | Установка периода записи данных с датчиков температуры 1-Wire.          |
| TEMPSINGLEADDR     | Присвоение адреса отдельному датчику температуры на шине 1-Wire.        |
| GTEMPPARAMS        | Запрос параметров температурного датчика.                               |
| IBUTTONID          | Выбор режима работы с идентификаторами iButton.                         |
| IBUTTONREPEATWRITE | Установка задержки повторной записи идентификатора iButton.             |
| IBUTTONOFFWRITE    | Установка задержки записи об отключении идентификатора iButton.         |

#### **ONLYTEMP**

Выбор режима работы с единственным датчиком температуры на шине 1-Wire.

- Доступна через сервер и SMS.
- Версия прошивки: 01.02-а4 и выше.
- Команда запроса: GONLYTEMP.

## Формат команды:

ONLYTEMP=x;

#### Параметры:

|   |   | Режим:                                                                                         |
|---|---|------------------------------------------------------------------------------------------------|
| , | • | • Y — только один датчик температуры (для этого режима установка адреса датчика не требуется); |
|   |   | • N — более одного датчика температуры (значение по умолчанию).                                |

#### Пример команды:

ONLYTEMP=N;

## Пример ответа:

ONLYTEMP=N;

**Примечание.** В случае отправки недопустимого значения будет установлено значение по умолчанию — N (вернется в ответ на команду).

#### **TEMPADDR**

Присвоение адресов датчикам температуры на шине 1-Wire.

- Доступна через сервер и SMS.
- Версия прошивки: 01.02-а4 и выше.
- Команда запроса: GTEMPADDR.

#### Формат команды:

TEMPADDR=A1,A2,A3,A4,A5,A6,A7,A8;

#### Параметры:

| An | Адрес датчика на шине, в формате HEX, без 0х, байтов типа устройства и контрольной суммы, где <b>n</b> — номер датчика (18). 00000000000 или FFFFFFFFFF — датчик отключен. |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

**Примечание.** Необходимо заполнять все 8 полей адресов. Адреса неиспользуемых датчиков необходимо установить равными 00000000000 или FFFFFFFF.

#### Пример команды:

#### Пример ответа:

**Примечание.** Команда TEMPADDR отключает режим одного датчика температуры на шине.

#### **TEMPPERIOD**

Установка периода записи данных с датчиков температуры 1-Wire.

- Доступна через сервер и SMS.
- Версия прошивки: 01.02-а4 и выше.
- Команда запроса: GTEMPPERIOD.

## Формат команды:

TEMPPERIOD=x;

#### Параметры:

| x | Период записи, в секундах (03600). 0 — запись отключена. |
|---|----------------------------------------------------------|
|---|----------------------------------------------------------|

## Пример команды:

TEMPPERIOD=30;

# Пример ответа:

TEMPPERIOD=30;

**Примечание.** Не рекомендуется устанавливать период записи данных меньше 10 секунд.

#### **TEMPSINGLEADDR**

Присвоение адреса отдельному датчику температуры на шине 1-Wire.

- Доступна через сервер и SMS.
- Версия прошивки: 01.02-а4 и выше.
- Команда запроса: GTEMPSINGLEADDR.

#### Формат команды:

TEMPSINGLEADDRx=y;

#### Параметры:

| х | Номер датчика (18).                                                                                                                            |
|---|------------------------------------------------------------------------------------------------------------------------------------------------|
| у | Адрес датчика на шине 1-Wire, в формате HEX, без 0х, байтов типа устройства и контрольной суммы. 00000000000 или FFFFFFFFFF — датчик отключен. |

#### Пример команды:

TEMPSINGLEADDR1=000000000008;

#### Пример ответа:

TEMPSINGLEADDR1=000000000008;

**Примечание.** В случае отправки недопустимого номера датчика контроллер возвращает ответ UNSUPPORTED\_PARAMETER.

**Примечание.** Команда НЕ отключает режим одного датчика температуры на шине.

#### **GTEMPPARAMS**

Запрос параметров температурного датчика.

- Доступна через сервер и SMS.
- Версия прошивки: 01.10 и выше.
- Команда запроса: GTEMPPARAMSx. В ответ на запрос возвращается команда TEMPPARAMS.

#### Формат команды:

GTEMPPARAMSx;

## Формат ответа:

TEMPPARAMSx=a,b,c;

#### Параметры:

| х | Номер датчика (18).                                                                                                                    |
|---|----------------------------------------------------------------------------------------------------------------------------------------|
| a | Адрес датчика, в формате HEX, без 0х, байтов типа устройства и контрольной суммы. 00000000000 или FFFFFFFFFF — датчик отключен.        |
| b | <ul> <li>Наличие новых данных с момента предыдущего запроса:</li> <li>0 — нет новых данных;</li> <li>1 — есть новые данные.</li> </ul> |
| С | Температура в °C, с десятичной точкой.                                                                                                 |

#### Пример команды:

GTEMPPARAMS2;

#### Пример ответа:

TEMPPARAMS2=1B2028EAA7FF,1,15.8125;

**Примечание.** Команда возвращает текущий рабочий адрес датчика. Если присвоить адрес командами TEMPADDR или TEMPSINGLEADDR в режиме работы шины 1-Wire с несколькими датчиками температуры, то команда GTEMPARAMS может вернуть новый адрес только через 1 секунду. При этом GTEMPADDR и GTEMPSINGLEADDR будут возвращать новый адрес сразу.

**Примечание.** Присвоение адреса через команду TEMPSINGLEADDR при включенном режиме работы с единственным датчиком не повлияет на ответ на эту команду.

**Примечание.** При включенном режиме работы шины 1-Wire с единственным датчиком для получения его текущих параметров в параметре **х** команды <u>GTEMPPARAMS</u> необходимо передавать 1 (GTEMPPARAMS1;). При этом в параметре **а** вернется значение FFFFFFFFF.

**Примечание.** В случае отправки недопустимого номера датчика контроллер возвращает ответ UNSUPPORTED\_PARAMETER.

#### **IBUTTONID**

Выбор режима работы с идентификаторами iButton.

- Команда позволяет включить или отключить работу контроллера с картами iButton. В случае отключения контроллер не будет выполнять запись идентификаторов подключаемых карт.
- Доступна через сервер и SMS.
- Версия прошивки: 01.02-а4 и выше.
- Команда запроса: GIBUTTONID.

#### Формат команды:

IBUTTONID=x;

## Параметры:

|   | Режим:                                     |
|---|--------------------------------------------|
| x | • 0 — работа с идентификаторами отключена; |
|   | • 1 — работа с идентификаторами включена.  |

**Примечание.** При передаче недопустимого значения в контроллере будет установлено значение по умолчанию — 0.

#### Пример команды:

IBUTTONID=1;

## Пример ответа:

IBUTTONID=1;

#### **IBUTTONREPEATWRITE**

Установка задержки повторной записи идентификатора iButton.

- Команда позволяет установить период повторной записи идентификатора iButton после установки в считыватель. Первая запись идентификатора при установке ключа/карты выполняется всегда, независимо от данной настройки.
- Доступна через сервер и SMS.
- Версия прошивки: 01.02-а4 и выше.
- Команда запроса: GIBUTTONREPEATWRITE.

#### Формат команды:

IBUTTONREPEATWRITE=x;

#### Параметры:

| задержка в секундах (03600). 0— повторная запись идентификатора выполняется при каждой установке карты. |  | СЯ |
|---------------------------------------------------------------------------------------------------------|--|----|
|---------------------------------------------------------------------------------------------------------|--|----|

#### Пример команды:

IBUTTONREPEATWRITE=10;

#### Пример ответа:

IBUTTONREPEATWRITE=10;

**Примечание.** В случае отправки недопустимого значения в контроллере будет установлено значение по умолчанию — 5.

#### **IBUTTONOFFWRITE**

Установка задержки записи об отключении идентификатора iButton.

- Команда позволяет установить интервал, через который будет сделана запись с нулевым идентификатором iButton после извлечения карты из считывателя.
- Доступна через сервер и SMS.
- Версия прошивки: 01.02-а4 и выше.
- Команда запроса: GIBUTTONOFFWRITE.

#### Формат команды:

IBUTTONOFFWRITE=x;

## Параметры:

| х Задержка в секундах (03600). 0 — запись об извлечении карты не выполняется. |
|-------------------------------------------------------------------------------|
|-------------------------------------------------------------------------------|

#### Пример команды:

IBUTTONOFFWRITE=0;

#### Пример ответа:

IBUTTONOFFWRITE=0;

**Примечание.** В случае отправки недопустимого значения в контроллере будет установлено значение по умолчанию — 0.

# Системы измерения для нефтехранилищ

| Список команд  | Описание                                                                |
|----------------|-------------------------------------------------------------------------|
| FUELTANKPERIOD | Установка периода записи данных.                                        |
| FUELTANKADDR   | Присвоение адреса датчику.                                              |
| FUELTANKDATA   | Выбор параметров, запрашиваемых у датчика.                              |
| FUELTANKPARAMS | Запрос текущих параметров системы измерения.                            |
| IGLACONF       | Настройка работы с системой измерения «Игла».                           |
| IGLAPASSIVE    | Включение пассивного режима взаимодействия с системой измерения «Игла». |
| STRUNACONF     | Настройка работы с системой измерения «Struna+».                        |

## **FUELTANKPERIOD**

Установка периода записи данных.

- Доступна через сервер и SMS.
- Версия прошивки: 13.20 и выше.
- Команда запроса: GFUELTANKPERIOD.

## Формат команды:

FUELTANKPERIOD=period;

#### Параметры:

| period | Период записи данных, в секундах (03600). 0 — отключает запись данных. |
|--------|------------------------------------------------------------------------|

## Пример команды:

FUELTANKPERIOD=30;

# Пример ответа:

FUELTANKPERIOD=30;

**Примечание.** Не рекомендуется устанавливать период записи данных меньше 5 секунд.

#### **FUELTANKADDR**

Присвоение адреса датчику.

- Доступна через сервер и SMS.
- Версия прошивки: 13.20 и выше.
- Команда запроса: GFUELTANKADDR.

## Формат команды:

FUELTANKADDRx=addr;

## Параметры:

| х    | Номер датчика (0116), дополненный спереди нулем до двух символов.                                |
|------|--------------------------------------------------------------------------------------------------|
| addr | Адрес датчика в шестнадцатеричной системе счисления, без 0x (00FF). 00 или FF — датчик отключен. |

# Пример команды:

FUELTANKADDR01=F0;

## Пример ответа:

FUELTANKADDR01=F0;

#### **FUELTANKDATA**

Выбор параметров, запрашиваемых у датчика.

- Доступна через сервер и SMS.
- Версия прошивки: 13.20 и выше.
- Команда запроса: GFUELTANKDATA.

## Формат команды:

FUELTANKDATAx=data;

#### Параметры:

| x    | Номер датчика (0116), дополненный спереди нулем до двух символов.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| data | Набор параметров, запрашиваемых у датчика. Битовое поле, передается в формате НЕХ, без 0х. Для запроса нескольких параметров необходимо выполнить сложение соответствующих значений в формате НЕХ и отправить эту сумму контроллеру.  • 0001 — уровень продукта (Н), в миллиметрах (Игла, Struna+);  • 0002 — масса продукта (М), в килограммах (Игла, Struna+);  • 0004 — объем продукта (V), в литрах (Игла, Struna+);  • 0010 — средняя плотность продукта (Рср), в г/см³ (Игла, Struna+);  • 0010 — средняя температура продукта (Тср), в °С (Игла, Struna+);  • 0020 — уровень подтоварной воды (Нв), в миллиметрах (Игла, Struna+);  • 0040 — плотность поверхностного слоя продукта (Рар), в г/см³ (Struna+);  • 0100 — плотность паровой фазы продукта (Рпф), в г/см³ (Struna+);  • 0200 — температура паровой фазы продукта (Птф), в °С (Struna+);  • 0400 — давление паровой фазы продукта (Дпф), в килопаскалях (Struna+);  • 0800 — уровень ДУТ (Ур ДУТ), в миллиметрах; температура ДУТ х10, в °С (Struna+);  • 1000 — приведенная плотность продукта (Рпр), в г/см³ (Игла);  • 2000 — плотность с датчика ДП1 (Рдп1), в г/см³ (Struna+);  • 4000 — не используется; |

**Пример команды:** у датчика 16 запрашиваются уровень продукта, средняя температура продукта, уровень подтоварной воды и приведенная плотность продукта.

FUELTANKDATA16=1031;

## Пример ответа:

FUELTANKDATA16=1031;

#### **FUELTANKPARAMS**

Запрос текущих параметров системы измерения.

- Доступна через сервер и SMS.
- Версия прошивки: 13.20 и выше.
- Команда запроса: GFUELTANKPARAMS.

#### Формат команды:

GFUELTANKPARAMSx;

#### Формат ответа:

FUELTANKPARAMSx=addr:u1,n1,v1:u2,n2,v2:u3,n3,v3:u4,n4,v4:u5,n5,v5:u6,n6,v6:u7,n7,v7:u8,n8,v8:u9, n9,v9:u10,n10,v10:u11,n11,v11:u12,n12,v12\_1,v12\_2:u13,n13,v13:u14,n14,v14:u15,n15,v15:u16,n16,v16;

#### Параметры:

| х    | Номер датчика в десятичной системе счисления (0116).                                                                                                                                                                                                                                                                                                            |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| addr | Адрес датчика в шестнадцатеричной системе счисления, без 0х.<br>00 или FF — датчик отключен.                                                                                                                                                                                                                                                                    |
| um   | <ul> <li>Использование параметра <b>m</b> (116):</li> <li>0 — не отслеживается;</li> <li>1 — отслеживается.</li> </ul>                                                                                                                                                                                                                                          |
| nm   | Наличие нового значения параметра <b>m</b> с момента предыдущего запроса:  • 0 — нет новых данных;  • 1 — есть новые данные.                                                                                                                                                                                                                                    |
| vm   | Значение параметра в экспоненциальной форме с точностью 3 знака после запятой. Пример: –7.130e+01.  ВНИМАНИЕ! В параметре <b>m</b> = 12 содержатся 2 значения:  • уровень ДУТ (v12_1), в миллиметрах;  • температура ДУТ (v12_2), в °С. При этом оба значения имеют общие флаги использования и наличия нового значения. Параметр v12_1 является целочисленным. |

#### Пример команды:

GFUELTANKPARAMS7;

#### Пример ответа:

 $FUELTANKPARAMS7 = 36:1,1,7.555e + 03:1,1,8.807e + 03:1,1,6.807e + 03:1,1,7.073e + 02:1,1,7.430e + 01:1,1,7.130e + 01:0,0,0.000e \\ + 00:0,0,0.000e + 00:0,0,0.000e + 00:0,0,0.000e + 00:0,0,0.000e + 00:1,1,2500,-1.530e + 01:0,0,0.000e + 00:0,0,0.000e + 00:0,0,0.000e \\ + 00:0,0,0.000e + 00;\\$ 

## **Примечание.** Соответствие параметров и их номеров **т** в ответе:

- 1 уровень продукта (Н), в миллиметрах;
- 2 масса продукта (М), в килограммах;
- 3 объем продукта (V), в литрах;
- 4 средняя плотность продукта (Pcp), в г/см<sup>3</sup>;
- 5 средняя температура продукта (Tсp), в  $^{\circ}$ С;
- 6 уровень подтоварной воды (Нв), в миллиметрах;
- 7 плотность поверхностного слоя продукта (Pap), в  $z/cm^3$ ;
- 8 температура поверхностного слоя продукта (Тар), в  $^{\circ}$ С;
- 9 плотность паровой фазы продукта ( $Pn\phi$ ), в  $z/cm^3$ ;
- 10 температура паровой фазы продукта (Тпф), в °С;
- 11 давление паровой фазы продукта (Дпф), в килопаскалях;
- 12 уровень ДУТ (Ур ДУТ), в миллиметрах; температура ДУТ, в °С;
- 13 приведенная плотность продукта (Pnp), в  $z/cm^3$ ;
- 14 плотность с датчика ДП1 (Рдп1), в г/см<sup>3</sup>;
- 15 не используется;
- 16 не используется.

## **Внимание!** В параметре m = 12 содержатся 2 значения:

- уровень ДУТ (v12\_1), в миллиметрах;
- температура ДУТ (v12\_2), в °С.

При этом оба значения имеют общие флаги использования и наличия нового значения. Параметр v12\_1 является целочисленным.

#### **IGLACONF**

Настройка работы с системой измерения «Игла».

- Доступна через сервер и SMS.
- Версия прошивки: 13.20 и выше.
- Команда запроса: GIGLACONF.

#### Формат команды:

IGLACONF=period,passive:a1,d1:a2,d2:a3,d3:a4,d4:a5,d5:a6,d6:a7,d7:a8,d8:a9,d9:a10,d10:a11,d11:a12,d12:a13,d13:a14,d14:a15,d15:a16,d16;

#### Параметры:

| period  | Период записи данных, в секундах (03600). 0 — отключает запись данных.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| passive | Пассивный режим:  • 0 — выключен (контроллер запрашивает настроенные параметры у системы);  • 1 — включен (контроллер принимает сообщения, передаваемые системой (без запроса) и записывает только заданные параметры, если они доступны).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| an      | Адрес датчика <b>n</b> (116) в шестнадцатеричной системе счисления, без 0x (0FF). 00 или FF — датчик отключен.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| dn      | Набор параметров, запрашиваемых у датчика <b>п</b> . Битовое поле, передается в формате НЕХ, без 0х. Для запроса нескольких параметров необходимо выполнить сложение соответствующих значений в формате НЕХ и отправить эту сумму контроллеру:  • 0001 — уровень продукта (Н), в миллиметрах;  • 0002 — масса продукта (М), в килограммах;  • 0004 — объем продукта (V), в литрах;  • 0010 — средняя плотность продукта (Рср), в г/см <sup>3</sup> ;  • 0010 — средняя температура продукта (Тср), в °С;  • 0020 — уровень подтоварной воды (Нв), в миллиметрах;  • 0040 — не используется;  • 0100 — не используется;  • 0400 — не используется;  • 0400 — не используется;  • 1000 — приведенная плотность продукта (Рпр), в г/см <sup>3</sup> ;  • 2000 — не используется;  • 4000 — не используется; |

#### Пример команды:

## Пример ответа:

IGLACONF=120,1:30,103F:31,103F:32,103F:33,103F:34,103F:35,103F:36,103F:37,103F:38,103F:39,103F:3A,103F:3B,103F:3C,103F:3D, 103F:3E,103F:3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103F;3F,103

**Внимание!** Для работы с системой «Игла» необходимо установить скорость шины RS-232(1) на 9600 бит/с, а формат RS-232(1) на 8-N-1.

Примечание. Не рекомендуется устанавливать период записи данных меньше 5 секунд.

#### **IGLAPASSIVE**

Включение пассивного режима взаимодействия с системой измерения «Игла».

- Доступна через сервер и SMS.
- Версия прошивки: 13.20 и выше.
- Команда запроса: GIGLAPASSIVE.

# Формат команды:

IGLAPASSIVE=passive;

#### Параметры:

|         | Пассивный режим:                                                                                                                                                       |
|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| passive | <ul> <li>0 — выключен (контроллер запрашивает настроенные параметры у системы);</li> <li>1 — включен (контроллер принимает сообщения, передаваемые системой</li> </ul> |
|         | (без запроса) и записывает только заданные параметры, если они доступны).                                                                                              |

## Пример команды:

IGLAPASSIVE=1;

## Пример ответа:

IGLAPASSIVE=1;

#### **STRUNACONF**

Настройка работы с системой измерения «Struna+».

- Доступна через сервер и SMS.
- Версия прошивки: 13.23 и выше.
- Команда запроса: GSTRUNACONF.

#### Формат команды:

STRUNACONF=period:a1,d1:a2,d2:a3,d3:a4,d4:a5,d5:a6,d6:a7,d7:a8,d8:a9,d9:a10,d10:a11,d11:a12,d12:a13,d13:a14,d14:a15,d15:a16,d16;

#### Параметры:

| period | Период записи данных, в секундах (03600). 0 — отключает запись данных.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| an     | Адрес датчика <b>n</b> (116) в шестнадцатеричной системе счисления, без 0х (0FF). 00 или FF — датчик отключен.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| dn     | Набор параметров, запрашиваемых у датчика <b>п</b> . Битовое поле, передается в формате НЕХ, без 0х. Для запроса нескольких параметров необходимо выполнить сложение соответствующих значений в формате НЕХ и отправить эту сумму контроллеру:  • 0001 — уровень продукта (Н), в миллиметрах;  • 0002 — масса продукта (М), в килограммах;  • 0004 — объем продукта (V), в литрах;  • 0010 — средняя плотность продукта (Рср), в г/см³;  • 0010 — средняя температура продукта (Тср), в °С;  • 0020 — уровень подтоварной воды (Нв), в миллиметрах;  • 0040 — плотность поверхностного слоя продукта (Рар), в г/см³;  • 0080 — температура поверхностного слоя продукта (Тар), в °С;  • 0100 — плотность паровой фазы продукта (Рпф), в г/см³;  • 0200 — температура паровой фазы продукта (Дпф), в килопаскалях;  • 0800 — уровень ДУТ (Ур ДУТ), в миллиметрах; температура ДУТ х10, в °С;  • 1000 — не используется;  • 2000 — плотность с датчика ДП1 (Рдп1), в г/см³; |

#### Пример команды:

STRUNACONF=120:30,0FFF:31,01FE:32,0F2E:33,0FFE:34,0FFE:35,0FFE:36,0FFE:37,0FFE:38,0FFE:39,0FFE:3A,0FFE:3B,0FFE:3D,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE:3F,0FFE

# Пример ответа:

STRUNACONF=120:30,0FFE:31,01FE:32,0F2E:33,0FFE:34,0FFE:35,0FFE:36,0FFE:37,0FFE:38,0FFE:39,0FFE:3A,0FFE:3B,0FFE:3D,0FFE:3E,0FFE:3F,01FO;

**Примечание.** Не рекомендуется устанавливать период записи данных меньше 5 секунд.

# Шина CAN

| Список команд | Описание                                  |
|---------------|-------------------------------------------|
| CANPERIOD     | Установка периода записи данных CAN.      |
| CANxMODE      | Выбор режима работы шины CAN.             |
| CANxBAUDRATE  | Установка скорости шины CAN.              |
| CANxACK       | Включение режима отправки АСК в шину CAN. |
| CANxACTIVE    | Включение активного режима шины CAN.      |

#### **CANPERIOD**

Установка периода записи данных CAN.

- Доступна через сервер и SMS.
- Версия прошивки: 01.02-а4 и выше.
- Команда запроса: GCANPERIOD.

# Формат команды:

CANPERIOD=x;

#### Параметры:

| ĺ |
|---|
|---|

## Пример команды:

CANPERIOD=120;

# Пример ответа:

CANPERIOD=120;

#### CANxMODE

Выбор режима работы шины CAN.

- Доступна через сервер и SMS.
- Версия прошивки: 01.02-а4 и выше.
- Команда запроса: GCANxMODE.

# Формат команды:

CANxMODE=mode;

#### Параметры:

| х    | Номер шины CAN.                                                                                                                                                                                          |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| mode | Режим работы шины CAN:  • А — работа с настройками, сформированными конфигуратором;  • I — работа с системой пассажиропотока IRMA MATRIX;  • Р — работа с настройками, записанными в программный модуль. |

# Пример команды:

CAN1MODE=A;

# Пример ответа:

CAN1MODE=A;

#### **CANxBAUDRATE**

Установка скорости шины CAN.

- Доступна через сервер и SMS.
- Версия прошивки: 01.02-а4 и выше.
- Команда запроса: GCANxBAUDRATE.

## Формат команды:

CANxBAUDRATE=baudrate;

## Параметры:

| х        | Номер шины CAN.                       |
|----------|---------------------------------------|
| baudrate | Скорость шины, в бит/с (10001000000). |

#### Пример команды:

CAN1BAUDRATE=19200;

# Пример ответа:

CAN1BAUDRATE=19200;

## **CANXACK**

Включение режима отправки АСК в шину CAN.

- Во включенном режиме контроллер будет отправлять в шину CAN подтверждение о приеме данных.
- Доступна через сервер и SMS.
- Версия прошивки: 01.10-а8 и выше.
- Команда запроса: GCANxACK.

# Формат команды:

CANxACK=ack;

## Параметры:

| х   | Номер шины CAN.                                        |
|-----|--------------------------------------------------------|
|     | Режим отправки:                                        |
| ack | <ul><li>1 — включить;</li><li>0 — выключить.</li></ul> |

## Пример команды:

CAN1ACK=1;

# Пример ответа:

CAN1ACK=1;

## **CANXACTIVE**

Включение активного режима шины CAN.

- В активном режиме контроллер может отправлять в шину CAN запросы.
- Доступна через сервер и SMS.
- Версия прошивки: 01.02-а4 и выше.
- Команда запроса: GCANxACTIVE.

## Формат команды:

CANxACTIVE=active;

# Параметры:

| х      | Номер шины CAN.                                                                |
|--------|--------------------------------------------------------------------------------|
| active | <ul><li>Активный режим:</li><li>1 — включить;</li><li>0 — выключить.</li></ul> |

# Пример команды:

CAN1ACTIVE=1;

# Пример ответа:

CAN1ACTIVE=1;

# Диагностика по шине CAN

| Список команд        | Описание                                                                                                   |
|----------------------|------------------------------------------------------------------------------------------------------------|
| CANVINBUS            | Выбор шины CAN, на которую контроллер будет отправлять запрос идентификатора транспортного средства (VIN). |
| GCIN                 | Запрос идентификации компонентов транспортного средства.                                                   |
| GVIN                 | Запрос идентификатора транспортного средства (VIN).                                                        |
| GCANDM2              | Запрос ошибок предыдущих активных ошибок CAN (DM2).                                                        |
| GCANFF               | Запрос стоп-кадра ошибки CAN (DM4).                                                                        |
| GVCH                 | Запрос ВСХ двигателя (ЕС1).                                                                                |
| CANERRRECEXT         | Включение режима расширенной записи ошибок с CAN.                                                          |
| CANERRSAVE           | Включение сохранения записей ошибок с CAN.                                                                 |
| CANDIAGNOSTICCONTROL | Запрос последних сохраненных ошибок с CAN.                                                                 |

#### **CANVINBUS**

Выбор шины CAN, на которую контроллер будет отправлять запрос идентификатора транспортного средства (VIN).

- Доступна через сервер и SMS.
- Версия прошивки: 13.25 и выше.
- Команда запроса: GCANVINBUS.

## Формат команды:

CANVINBUS=can;

## Параметры:

| can | Номер шины САN, на которую будет отправлен запрос: |
|-----|----------------------------------------------------|
|     | • 0 — запрос отключен;                             |
|     | • 1 — запрос на шину CAN1;                         |
|     | • 2 — запрос на шину CAN2.                         |

## Пример команды:

CANVINBUS=1;

## Пример ответа:

CANVINBUS=1;

**Примечание.** На указанную шину CAN при включении контроллера уходит запрос PGN 65260. При этом шина CAN должна быть настроена как активная (см. <u>CANXACTIVE</u>). Полученный ответ обновляет значение параметра VEHICLE\_VIN.

## **GCIN**

Запрос идентификации компонентов транспортного средства.

- Доступна через сервер и SMS.
- Версия прошивки: 13.25 и выше.
- Команда запроса: GCIN.

# Формат команды:

GCIN=can;

## Параметры:

| ١ | can | Номер шины CAN, на которую будет отправлен запрос. |
|---|-----|----------------------------------------------------|

## Формат ответа:

CIN=a\*b\*c\*d\*;

## Параметры:

| a | Производитель.              |
|---|-----------------------------|
| b | Модель.                     |
| С | Серийный номер.             |
| d | Номер агрегата (двигателя). |

# Пример команды:

GCIN=1;

# Пример ответа:

CIN=TK\*AutoGRAPH\*3100000\*\*;

**Примечание.** При выполнении команды на шину CAN уходит запрос PGN 65259. При этом шина CAN должна быть настроена как активная (см. CANxACTIVE).

## **GVIN**

Запрос идентификатора транспортного средства (VIN).

- Доступна через сервер и SMS.
- Версия прошивки: 13.25 и выше.
- Команда запроса: GVIN.

# Формат команды:

GVIN=can;

## Параметры:

| can | Номер шины CAN, на которую будет отправлен запрос. |
|-----|----------------------------------------------------|
|-----|----------------------------------------------------|

#### Формат ответа:

VIN=vin;

## Параметры:

| vin | Идентификатор (VIN) транспортного средства. |
|-----|---------------------------------------------|
|-----|---------------------------------------------|

# Пример команды:

GVIN=1;

## Пример ответа:

VIN=WAUZZZ44ZEN096063;

**Примечание.** При выполнении команды на шину CAN уходит запрос PGN 65260. При этом шина CAN должна быть настроена как активная (см. CANxACTIVE). Полученный ответ обновляет значение параметра VEHICLE\_VIN.

## **GCANDM2**

Запрос ошибок предыдущих активных ошибок CAN (DM2).

- Доступна через сервер и SMS.
- Версия прошивки: 13.25 и выше.
- Команда запроса: GCANDM2.

## Формат команды:

GCANDM2=can;

#### Параметры:

| can | Номер шины CAN, на которую будет отправлен запрос. |
|-----|----------------------------------------------------|
|-----|----------------------------------------------------|

#### Формат ответа:

CANDM2=OK;

## Пример команды:

GCANDM2=1;

# Пример ответа:

CANDM2=OK;

**Примечание.** При выполнении команды на шину CAN уходит запрос PGN 65227. При этом шина CAN должна быть настроена как активная (см. CANxACTIVE). Полученный ответ сохраняется в записях контроллера.

## **GCANFF**

Запрос стоп-кадра ошибки CAN (DM4).

- Доступна через сервер и SMS.
- Версия прошивки: 13.25 и выше.
- Команда запроса: GCANFF.

# Формат команды:

GCANFF=can;

## Параметры:

| can | Номер шины CAN, на которую будет отправлен запрос. |
|-----|----------------------------------------------------|
|-----|----------------------------------------------------|

## Формат ответа:

CANFF=OK;

# Пример команды:

GCANFF=1;

# Пример ответа:

CANFF=OK;

**Примечание.** При выполнении команды на шину CAN уходит запрос PGN 65229. При этом шина CAN должна быть настроена как активная (см. CANxACTIVE). Полученный ответ сохраняется в записях контроллера.

## **GVCH**

Запрос ВСХ двигателя (ЕС1).

- Доступна через сервер и SMS.
- Версия прошивки: 13.25 и выше.
- Команда запроса: GCANFF.

## Формат команды:

GVCH=can;

## Параметры:

| can | Номер шины CAN, на которую будет отправлен запрос. |
|-----|----------------------------------------------------|

## Формат ответа:

VCH=OK;

# Пример команды:

GVCH=1;

# Пример ответа:

VCH=OK;

**Примечание.** При выполнении команды на шину CAN уходит запрос PGN 65251. При этом шина CAN должна быть настроена как активная (см. CANxACTIVE). Полученный ответ сохраняется в записях контроллера.

#### **CANERRRECEXT**

Включение режима расширенной записи ошибок с CAN.

- Доступна через сервер и SMS.
- Версия прошивки: 13.34 и выше.
- Команда запроса: GCANERRRECEXT.

# Формат команды:

CANERRRECEXT=mode;

## Параметры:

|      | Режим сохранения записей об ошибках:            |
|------|-------------------------------------------------|
| mode | • 0 — сохранение стандартной записи об ошибках; |
|      | • 1 — сохранение расширенной записи об ошибках. |

#### Пример команды:

CANERRRECEXT=1;

## Пример ответа:

CANERRRECEXT=1;

**Примечание.** Расширенная запись дополнительно включает в себя адрес источника сообщения об ошибке. При включении данного режима стандартная запись сохраняться не будет.

#### **CANERRSAVE**

Включение сохранения записей ошибок с CAN.

- Доступна через сервер и SMS.
- Версия прошивки: 13.38 и выше.
- Команда запроса: GCANERRSAVE.

## Формат команды:

CANERRSAVE=mode;

#### Параметры:

| Режим сохранения записей об ошибках:  • 0 — сохранение записей об ошибках отключено; |  |
|--------------------------------------------------------------------------------------|--|
|                                                                                      |  |

#### Пример команды:

CANERRSAVE=1;

## Пример ответа:

CANERRSAVE=1;

**Примечание.** Если сохранение записей ошибок включено, то они сохраняются при изменении состояния соответствующей ошибки, но не чаще интервала, заданного CANPERIOD.

**Внимание!** При CANPERIOD=0 сохранение происходит с минимальным интервалом в 10 минут.

#### **CANDIAGNOSTICCONTROL**

Запрос последних сохраненных ошибок с CAN.

- Доступна через сервер и SMS.
- Версия прошивки: 13.38 и выше.
- Команда запроса: GCANDIAGNOSTICCONTROL и <u>CANDIAGNOSTICCONTROL</u>. Обе команды работают одинаково, на запрос.

## Формат команды:

CANDIAGNOSTICCONTROL=spn\_1,fmi\_1,ml\_1,rl\_1,al\_1,pl\_1,mlf\_1,rlf\_1,alf\_1,plf\_1,cnt\_1,conv\_1, type\_1,bus\_1,addr\_1: ... spn\_16,fmi\_16,ml\_16,rl\_16,al\_16,pl\_16,mlf\_16,rlf\_16,alf\_16,plf\_16,cnt\_16, conv\_16,type\_16,bus\_16,addr\_16;

## Параметры:

| spn_n | SPN ошибки n (число в шестнадцатеричной системе счисления).                                                                                                                                                          |  |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| fmi_n | FMI ошибки n (число в шестнадцатеричной системе счисления).                                                                                                                                                          |  |
| ml_n  | Статус индикатора «Malfunction Indicator Lamp» ошибки n:  • 0 — индикатор выключен;  • 1 — индикатор включен;  • 2 — short MIL for WWH OBD.                                                                          |  |
| rl_n  | Статус индикатора «Red Stop Lamp» ошибки n: • 0 — индикатор выключен; • 1 — индикатор включен.                                                                                                                       |  |
| al_n  | Статус индикатора «Amber Warning Lamp» ошибки n: • 0 — индикатор выключен; • 1 — индикатор включен.                                                                                                                  |  |
| pl_n  | Статус индикатора «Protect Lamp» ошибки n:  • 0 — индикатор выключен;  • 1 — индикатор включен.                                                                                                                      |  |
| mlf_n | Статус мигающего индикатора «Malfunction Indicator Lamp» ошибки n:  • 0 — индикатор мигает редко (1 Гц);  • 1 — индикатор мигает часто (2 Гц или чаще);  • 2 — class C DTC;  • 3 — нет данных / индикатор не мигает. |  |
| rlf_n | Статус мигающего индикатора «Red Stop Lamp» ошибки n:  • 0 — индикатор мигает редко (1 Гц);  • 1 — индикатор мигает часто (2 Гц или чаще);  • 3 — нет данных / индикатор не мигает.                                  |  |
| alf_n | Статус мигающего индикатора «Amber Warning Lamp» ошибки n:  • 0 — индикатор мигает редко (1 Гц);  • 1 — индикатор мигает часто (2 Гц или чаще);  • 3 — нет данных / индикатор не мигает.                             |  |

| plf_n  | <ul> <li>Статус мигающего индикатора «Protect Lamp» ошибки n:</li> <li>0 — индикатор мигает редко (1 Гц);</li> <li>1 — индикатор мигает часто (2 Гц или чаще);</li> <li>3 — нет данных / индикатор не мигает.</li> </ul> |  |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| cnt_n  | Счетчик ошибок n.                                                                                                                                                                                                        |  |
| conv_n | <ul> <li>Метод преобразования SPN ошибки n:</li> <li>0 — рекомендованный;</li> <li>1 — устаревший неопределенный.</li> </ul>                                                                                             |  |
| type_n | <ul> <li>Тип ошибки n:</li> <li>0 — ошибка получена в пассивном режиме;</li> <li>1 — ошибка получена в активном режиме.</li> </ul>                                                                                       |  |
| bus_n  | Номер шины CAN, с которой получена ошибка n.                                                                                                                                                                             |  |
| addr_n | Адрес источника ошибки n (число в шестнадцатеричной системе счисления).                                                                                                                                                  |  |

## Пример команды:

GCANDIAGNOSTICCONTROL;

## Пример ответа:

CANDIAGNOSTICCONTROL=61231,1F,3,1,0,1,1,0,1,3,20,0,1,2,0:61232,1E,1,0,1,3,3,1,0,1,21,0,0,2,0:61233,1D,3,1,0,1,1,0,1,3,22,0,1,2,0:61234,1C,1,0,1,3,3,1,0,1,23,0,1,2,0:61235,1B,3,1,0,1,1,0,1,3,24,0,1,2,0:61236,1A,1,0,1,3,3,1,0,1,25,0,1,2,0:61237,19,3,1,0,1,1,0,1,3,26,0,1,2,0:61238,18,1,0,1,3,3,1,0,1,27,0,1,2,0:61239,17,3,1,0,1,1,0,1,3,28,0,1,2,0:6123A,16,1,0,1,3,3,1,0,1,29,0,1,2,0:6123B,15,3,1,0,1,1,0,1,3,30,0,1,2,0:6123C,14,1,0,1,3,3,1,0,1,3,1,0,1,3,1,0,1,3,3,1,0,1,3,3,1,0,1,3,3,1,0,1,3,3,1,0,1,3,3,1,0,1,3,3,1,0,1,3,3,1,0,1,3,3,1,0,1,3,3,1,0,1,3,3,1,0,1,3,3,1,0,1,3,3,1,0,1,3,3,1,0,1,3,3,1,0,1,3,3,1,0,1,3,3,1,0,1,3,3,1,0,1,3,3,1,0,1,3,3,1,0,1,3,3,1,0,1,3,3,1,0,1,3,3,1,0,1,3,3,1,0,1,3,1,0,1,3,3,1,0,1,3,3,1,0,1,3,1,0,1,3,1,0,1,3,1,0,1,3,1,0,1,3,1,0,1,3,1,0,1,3,1,0,1,3,1,0,1,3,1,0,1,3,1,0,1,3,1,0,1,3,1,0,1,3,1,0,1,3,1,0,1,3,1,0,1,3,1,0,1,3,1,0,1,3,1,0,1,3,1,0,1,3,1,0,1,3,1,0,1,3,1,0,1,3,1,0,1,3,1,0,1,3,1,0,1,3,1,0,1,3,1,0,1,3,1,0,1,3,1,0,1,3,1,0,1,3,1,0,1,3,1,0,1,3,1,0,1,3,1,0,1,3,1,0,1,3,1,0,1,3,1,0,1,3,1,0,1,3,1,0,1,3,1,0,1,3,1,0,1,3,1,0,1,3,1,0,1,3,1,0,1,3,1,0,1,3,1,0,1,3,1,0,1,3,1,0,1,3,1,0,1,3,1,0,1,3,1,0,1,3,1,0,1,3,1,0,1,3,1,0,1,3,1,0,1,3,1,0,1,3,1,0,1,3,1,0,1,3,1,0,1,3,1,0,1,3,1,0,1,3,1,0,1,3,1,0,1,3,1,0,1,3,1,0,1,3,1,0,1,3,1,0,1,3,1,0,1,3,1,0,1,3,1,0,1,3,1,0,1,3,1,0,1,3,1,0,1,3,1,0,1,3,1,0,1,3,1,0,1,3,1,0,1,3,1,0,1,3,1,0,1,3,1,0,1,3,1,0,1,3,1,0,1,3,1,0,1,3,1,0,1,3,1,0,1,3,1,0,1,3,1,0,1,3,1,0,1,3,1,0,1,3,1,0,1,3,1,0,1,3,1,0,1,3,1,0,1,3,1,0,1,3,1,0,1,3,1,0,1,3,1,0,1,3,1,0,1,3,1,0,1,3,1,0,1,3,1,0,1,3,1,0,1,3,1,0,1,3,1,0,1,3,1,0,1,3,1,0,1,3,1,0,1,3,1,0,1,3,1,0,1,3,1,0,1,3,1,0,1,3,1,0,1,3,1,0,1,3,1,0,1,3,1,0,1,3,1,0,1,3,1,0,1,3,1,0,1,3,1,0,1,1,0,1,3,1,0,1,1,0,1,3,1,0,1,1,0,1,1,0,1,3,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,1,0,1,1,1,0,1,1,1,0,1,1,1,0,1,1,1,1,1,1,

**Примечание.** Если ошибки сохраняются в формате стандартной записи (<u>CANERRRECEXT</u>=1), то поле адреса имеет значение 0.

# Уровневые параметры CAN

| Список команд   | Описание                                                                |
|-----------------|-------------------------------------------------------------------------|
| CANLEVELPARAM   | Настройка получения уровневого параметра с шины CAN.                    |
| CANLEVELCONTROL | Запрос последнего полученного значения уровневого параметра с шины CAN. |

#### **CANLEVELPARAM**

Настройка получения уровневого параметра с шины CAN.

- Доступна через сервер и SMS.
- Для применения настроек требуется перезапуск контроллера после обработки команды.
- Версия прошивки: 01.05-а4 и выше.
- Команда запроса: GCANLEVELPARAM.

**Примечание.** Формат команды настройки зависит от параметров **i1** и **i3**. Команды запроса и ответа имеют единый формат.

**Примечание.** Параметры **d1**, **d2** и **d3** необходимы только при **i1** =  $CAN_LID_LCOMPOSITE_LSTANDARD$  или **i1** =  $CAN_LID_LCOMPOSITE_LSTANDED$ . Иначе они не применяются и могут быть опущены.

**Примечание.** Параметр **i3** может быть опущен. При этом он будет установлен в 0x7FF или 0x1FFFFFFF в зависимости от параметра **i1** (для CAN\_ID\_STANDARD/CAN\_ID\_COMPOSITE\_STANDARD или CAN\_ID\_EXTENDED/CAN\_ID\_COMPOSITE\_EXTENDED соответственно).

#### Формат команды:

CANLEVELPARAMn=i1,i2,i3,d1,d2,d3,c,p1,p2,p3,p4,p5,p6;

#### Параметры:

| n  | Порядковый номер параметра (1 — CAN_LEVEL_PARAMS_NUM).                                                                                                                                                                                                                                                                                                             |  |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| i1 | Тип CAN ID (см. CanldType).                                                                                                                                                                                                                                                                                                                                        |  |
| i2 | <ul> <li>CAN ID параметра (число в шестнадцатеричной системе счисления в зависимости от параметра i1):</li> <li>i1 = CAN_ID_STANDARD/CAN_ID_COMPOSITE_STANDARD: 07FF;</li> <li>i1 = CAN_ID_EXTENDED/CAN_ID_COMPOSITE_EXTENDED: 01FFFFFFF.</li> </ul>                                                                                                               |  |
| i3 | Маска CAN ID параметра (число в шестнадцатеричной системе счисления в зависимости от параметра i1). Перед сравнением ID, полученного с шины, с CAN ID параметра производится логическая операция «И» между ID, полученным с шины, и маской.  • i1 = CAN_ID_STANDARD/CAN_ID_COMPOSITE_STANDARD: 07FF;  • i1 = CAN_ID_EXTENDED/CAN_ID_COMPOSITE_EXTENDED: 01FFFFFFF. |  |
| d1 | Номер бита в последовательности данных, полученных с шины. С этого номера начинается ключ поля данных (десятичное число: 164).                                                                                                                                                                                                                                     |  |
| d2 | Длина ключа поля данных, в битах (десятичное число: 132).                                                                                                                                                                                                                                                                                                          |  |
| d3 | Ключ поля данных (число в шестнадцатеричной системе счисления: 0FFFFFFF).                                                                                                                                                                                                                                                                                          |  |
| c  | Маска используемых шин: • 1 — CAN 1; • 2 — CAN 2.                                                                                                                                                                                                                                                                                                                  |  |
| p1 | Тип параметра (десятичное число) (см. SUPPORTED_CAN_LEVEL_PARAMS).                                                                                                                                                                                                                                                                                                 |  |
| p2 | Номер бита в последовательности данных, полученных с шины. С этого номера начинается параметр (десятичное число: 164).                                                                                                                                                                                                                                             |  |

| р3 | Длина параметра, в битах (десятичное число: 132).                                                                                                                                                        |  |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| p4 | Порядок байтов в посылке:  • 0 — little endian (от младшего к старшему);  • 1 — big endian (от старшего к младшему).                                                                                     |  |
| p5 | Коэффициент. Число с десятичной точкой, на которое будет умножаться параметр. Допустимый диапазон соответствует диапазону числа с плавающей точкой одинарной точности, описываемого стандартом IEEE 745. |  |
| р6 | Смещение. Число с десятичной точкой, которое будет прибавляться к параметру. Допустимый диапазон соответствует диапазону числа с плавающей точкой одинарной точности, описываемого стандартом IEEE 745.  |  |

#### CANLEVELCONTROL

Запрос последнего полученного значения уровневого параметра с шины CAN.

- Доступна через сервер и SMS.
- Версия прошивки: 01.05-а4 и выше.
- Команды запроса: GCANLEVELCONTROL и CANLEVELCONTROL. Обе команды работают одинаково, на запрос.

# Формат команды:

GCANLEVELCONTROLn;

## Формат ответа:

CANLEVELCONTROLn=a,b;

## Параметры:

| n | Порядковый номер параметра (1 — CAN_LEVEL_PARAMS_NUM).                                                                            |  |
|---|-----------------------------------------------------------------------------------------------------------------------------------|--|
| a | <ul> <li>Наличие новых данных с момента предыдущего запроса:</li> <li>0 — нет новых данных;</li> <li>1 — новые данные.</li> </ul> |  |
| b | Последнее полученное с шины значение параметра.                                                                                   |  |

## Пример команды:

GCANLEVELCONTROL1;

# Пример ответа:

CANLEVELCONTROL1=1,54;

# Параметры CAN, значения которых хранятся в Int64

| Список команд  | Описание                                                              |
|----------------|-----------------------------------------------------------------------|
| CANLONGPARAM   | Настройка получения длинного параметра с шины CAN.                    |
| CANLONGCONTROL | Запрос последнего полученного значения длинного параметра с шины CAN. |

## **CANLONGPARAM**

Настройка получения длинного параметра с шины CAN.

- Доступна через сервер и SMS.
- Для применения настроек требуется перезапуск контроллера после обработки команды.
- Версия прошивки: 01.05-а4 и выше.
- Команда запроса: GCANLONGPARAM.

**Примечание.** Формат команды настройки зависит от параметров **i1** и **i3**. Команды запроса и ответа имеют единый формат.

**Примечание.** Параметры **d1**, **d2** и **d3** необходимы только при **i1** =  $CAN_LID_LCOMPOSITE_LSTANDARD$  или **i1** =  $CAN_LID_LCOMPOSITE_LSTANDED$ . Иначе они не применяются и могут быть опущены.

**Примечание.** Параметр **i3** может быть опущен. При этом он будет установлен в 0x7FF или 0x1FFFFFFF в зависимости от параметра **i1** (для CAN\_ID\_STANDARD/CAN\_ID\_COMPOSITE\_STANDARD или CAN\_ID\_EXTENDED/CAN\_ID\_COMPOSITE\_EXTENDED соответственно).

#### Формат команды:

CANLONGPARAMn=i1,i2,i3,d1,d2,d3,c,p1,p2,p3,p4,p5,p6;

#### Параметры:

| n  | Порядковый номер параметра (1 — CAN_LONG_PARAMS_NUM).                                                                                                                                                                                                                                                                                                              |  |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| i1 | Тип CAN ID (см. CanIdType).                                                                                                                                                                                                                                                                                                                                        |  |
| i2 | <ul> <li>CAN ID параметра (число в шестнадцатеричной системе счисления в зависимости от параметра i1):</li> <li>i1 = CAN_ID_STANDARD/CAN_ID_COMPOSITE_STANDARD: 07FF;</li> <li>i1 = CAN_ID_EXTENDED/CAN_ID_COMPOSITE_EXTENDED: 01FFFFFFF.</li> </ul>                                                                                                               |  |
| i3 | Маска CAN ID параметра (число в шестнадцатеричной системе счисления в зависимости от параметра i1). Перед сравнением ID, полученного с шины, с CAN ID параметра производится логическая операция «И» между ID, полученным с шины, и маской.  • i1 = CAN_ID_STANDARD/CAN_ID_COMPOSITE_STANDARD: 07FF;  • i1 = CAN_ID_EXTENDED/CAN_ID_COMPOSITE_EXTENDED: 01FFFFFFF. |  |
| d1 | Номер бита в последовательности данных, полученных с шины. С этого номера начинается ключ поля данных (десятичное число: 164).                                                                                                                                                                                                                                     |  |
| d2 | Длина ключа поля данных, в битах (десятичное число: 132).                                                                                                                                                                                                                                                                                                          |  |
| d3 | Ключ поля данных (число в шестнадцатеричной системе счисления: 0FFFFFFF).                                                                                                                                                                                                                                                                                          |  |
| c  | Маска используемых шин: • 1 — CAN 1; • 2 — CAN 2.                                                                                                                                                                                                                                                                                                                  |  |
| p1 | Тип параметра (десятичное число) (см. SUPPORTED_CAN_LONG_PARAMS).                                                                                                                                                                                                                                                                                                  |  |
| p2 | Номер бита в последовательности данных, полученных с шины. С этого номера начинается параметр (десятичное число: 164).                                                                                                                                                                                                                                             |  |

| р3 | Длина параметра, в битах (десятичное число: 132).                                                                                                                                                        |  |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| p4 | Порядок байтов в посылке:  • 0 — little endian (от младшего к старшему);  • 1 — big endian (от старшего к младшему).                                                                                     |  |
| p5 | Коэффициент. Число с десятичной точкой, на которое будет умножаться параметр. Допустимый диапазон соответствует диапазону числа с плавающей точкой одинарной точности, описываемого стандартом IEEE 745. |  |
| p6 | Смещение. Число с десятичной точкой, которое будет прибавляться к параметру. Допустимый диапазон соответствует диапазону числа с плавающей точкой одинарной точности, описываемого стандартом IEEE 745.  |  |

## **CANLONGCONTROL**

Запрос последнего полученного значения длинного параметра с шины CAN.

- Доступна через сервер и SMS.
- Версия прошивки: 01.05-а4 и выше.
- Команда запроса: GCANLONGCONTROL.

# Формат команды:

GCANLONGCONTROLn;

## Формат ответа:

CANLONGCONTROLn=a,b;

# Параметры:

| n | Порядковый номер параметра (1 — CAN_LONG_PARAMS_NUM).                                             |  |
|---|---------------------------------------------------------------------------------------------------|--|
| a | Наличие новых данных с момента предыдущего запроса:  • 0 — нет новых данных;  • 1 — новые данные. |  |
| b | Последнее полученное с шины значение параметра.                                                   |  |

# Пример команды:

GCANLONGCONTROL1;

# Пример ответа:

CANLONGCONTROL1=0,567;

# Дискретные параметры CAN

| Список команд   | Описание                                                                 |
|-----------------|--------------------------------------------------------------------------|
| CANDISCRPARAM   | Настройка получения дискретного параметра с шины CAN.                    |
| CANDISCRCONTROL | Запрос последнего полученного значения дискретного параметра с шины CAN. |

#### **CANDISCRPARAM**

Настройка получения дискретного параметра с шины CAN.

- Доступна через сервер и SMS.
- Для применения настроек требуется перезапуск контроллера после обработки команды.
- Версия прошивки: 01.05-а4 и выше.
- Команда запроса: GCANDISCRPARAM.

**Примечание.** Формат команды настройки зависит от параметров **i1** и **i3**. Команды запроса и ответа имеют единый формат.

**Примечание.** Параметры **d1**, **d2** и **d3** необходимы только при **i1** =  $CAN_{ID}$ \_COMPOSITE\_STANDARD или **i1** =  $CAN_{ID}$ \_COMPOSITE\_EXTENDED. Иначе они не применяются и могут быть опущены.

**Примечание.** Параметр **i3** может быть опущен. При этом он будет установлен в 0x7FF или 0x1FFFFFFF в зависимости от параметра **i1** (для CAN\_ID\_STANDARD/CAN\_ID\_COMPOSITE\_STANDARD или CAN\_ID\_EXTENDED/CAN\_ID\_COMPOSITE\_EXTENDED соответственно).

#### Формат команды:

CANDISCRPARAMn=i1,i2,i3,d1,d2,d3,c,p1,p2,p3,p4,p5,p6,p7;

#### Параметры:

| n  | Порядковый номер параметра (1 — CAN_DISCR_PARAMS_NUM).                                                                                                                                                                                                                                                                                                             |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| i1 | Тип CAN ID (см. CanIdType).                                                                                                                                                                                                                                                                                                                                        |
| i2 | <ul> <li>CAN ID параметра (число в шестнадцатеричной системе счисления в зависимости от параметра i1):</li> <li>i1 = CAN_ID_STANDARD/CAN_ID_COMPOSITE_STANDARD: 07FF;</li> <li>i1 = CAN_ID_EXTENDED/CAN_ID_COMPOSITE_EXTENDED: 01FFFFFFF.</li> </ul>                                                                                                               |
| i3 | Маска CAN ID параметра (число в шестнадцатеричной системе счисления в зависимости от параметра i1). Перед сравнением ID, полученного с шины, с CAN ID параметра производится логическая операция «И» между ID, полученным с шины, и маской.  • i1 = CAN_ID_STANDARD/CAN_ID_COMPOSITE_STANDARD: 07FF;  • i1 = CAN_ID_EXTENDED/CAN_ID_COMPOSITE_EXTENDED: 01FFFFFFF. |
| d1 | Номер бита в последовательности данных, полученных с шины. С этого номера начинается ключ поля данных (десятичное число: 164).                                                                                                                                                                                                                                     |
| d2 | Длина ключа поля данных, в битах (десятичное число: 132).                                                                                                                                                                                                                                                                                                          |
| d3 | Ключ поля данных (число в шестнадцатеричной системе счисления: 0FFFFFFFF).                                                                                                                                                                                                                                                                                         |
| С  | Маска используемых шин:  • 1 — CAN 1;  • 2 — CAN 2.                                                                                                                                                                                                                                                                                                                |
| p1 | Тип параметра (десятичное число) (см. SUPPORTED_CAN_DISCR_PARAMS).                                                                                                                                                                                                                                                                                                 |
| p2 | Первый бит состояния (десятичное число: 164).                                                                                                                                                                                                                                                                                                                      |

| р3 | Количество бит состояния (десятичное число: 131).                                                                        |  |
|----|--------------------------------------------------------------------------------------------------------------------------|--|
| p4 | Номер бита в последовательности данных, полученных с шины. Этот бит отображает статус параметра (десятичное число: 164). |  |
| p5 | Использование бита статуса:  • 1 — использовать бит статуса;  • 0 — не использовать бит статуса.                         |  |
| р6 | Значение бита статуса, которое соответствует валидному состоянию (0 или 1).                                              |  |
| p7 | Порядок байтов в посылке:  • 0 — little endian (от младшего к старшему);  • 1 — big endian (от старшего к младшему).     |  |

## CANDISCRCONTROL

Запрос последнего полученного значения дискретного параметра с шины CAN.

- Доступна через сервер и SMS.
- Версия прошивки: 01.05-а4 и выше.
- Команда запроса: GCANDISCRCONTROL.

# Формат команды:

GCANDISCRCONTROLn;

## Формат ответа:

CANDISCRCONTROLn=a,b;

# Параметры:

| n | Порядковый номер параметра (1 — CAN_DISCR_PARAMS_NUM).                                                                            |  |
|---|-----------------------------------------------------------------------------------------------------------------------------------|--|
| a | <ul> <li>Наличие новых данных с момента предыдущего запроса:</li> <li>0 — нет новых данных;</li> <li>1 — новые данные.</li> </ul> |  |
| b | Последнее полученное с шины значение параметра, в НЕХ, с префиксом 0х.                                                            |  |

# Пример команды:

GCANDISCRCONTROL1;

# Пример ответа:

CANDISCRCONTROL1=0,0x04;

# Произвольные параметры CAN

| Список команд     | Описание                                                                   |
|-------------------|----------------------------------------------------------------------------|
| CANGENERICPARAM   | Настройка получения произвольного параметра с шины CAN.                    |
| CANGENERICTYPEn   | Установка типа записи произвольного параметра с шины CAN.                  |
| CANGENERICCONTROL | Запрос последнего полученного значения произвольного параметра с шины CAN. |

| Список групп параметров | Описание                          |
|-------------------------|-----------------------------------|
| GenericCanParamTypes    | Типы произвольных параметров CAN. |
| CanldType               | Типы CAN ID.                      |

#### **CANGENERICPARAM**

Настройка получения произвольного параметра с шины CAN.

- Доступна через сервер и SMS.
- Для применения настроек требуется перезапуск контроллера после обработки команды.
- Версия прошивки: 01.05-а4 и выше.
- Команда запроса: GCANGENERICPARAM.

**Примечание.** Формат команды настройки зависит от параметров **i1**, **i3** и **t**. Команды запроса и ответа имеют единый формат в рамках одного параметра **t**.

**Примечание.** Параметры k1, k2 и k3 необходимы только при  $i1 = CAN_ID_COMPOSITE_STANDARD$  или  $i1 = CAN_ID_COMPOSITE_EXTENDED$ . Иначе они не применяются и могут быть опущены.

**Примечание.** Параметр **i3** может быть опущен. При этом он будет установлен в 0x7FF или 0x1FFFFFFF в зависимости от параметра **i1** (для CAN\_ID\_STANDARD/CAN\_ID\_COMPOSITE\_STANDARD или CAN\_ID\_EXTENDED/CAN\_ID\_COMPOSITE\_EXTENDED соответственно).

#### Формат команды:

CANGENERICPARAMn=t,i1,i2,i3,k1,k2,k3,c,l1(d1),l2(d2),l3(d3),l4(d4),l5(d5)(,d6);

#### Параметры:

| n  | Порядковый номер параметра (1 — CAN_GENERIC_PARAMS_NUM).                                                                                                                                                                                                                                                                                                           |  |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| t  | Тип параметра (см. GenericCanParamTypes).                                                                                                                                                                                                                                                                                                                          |  |
| i1 | Тип CAN ID (см. CanIdType).                                                                                                                                                                                                                                                                                                                                        |  |
| i2 | <ul> <li>CAN ID параметра (число в шестнадцатеричной системе счисления в зависимости от параметра i1):</li> <li>i1 = CAN_ID_STANDARD/CAN_ID_COMPOSITE_STANDARD: 07FF;</li> <li>i1 = CAN_ID_EXTENDED/CAN_ID_COMPOSITE_EXTENDED: 01FFFFFFF.</li> </ul>                                                                                                               |  |
| i3 | Маска CAN ID параметра (число в шестнадцатеричной системе счисления в зависимости от параметра i1). Перед сравнением ID, полученного с шины, с CAN ID параметра производится логическая операция «И» между ID, полученным с шины, и маской.  • i1 = CAN_ID_STANDARD/CAN_ID_COMPOSITE_STANDARD: 07FF;  • i1 = CAN_ID_EXTENDED/CAN_ID_COMPOSITE_EXTENDED: 01FFFFFFF. |  |
| k1 | Номер бита в последовательности данных, полученных с шины. С этого номера начинается ключ поля данных (десятичное число: 164).                                                                                                                                                                                                                                     |  |
| k2 | Длина ключа поля данных в битах (десятичное число: 132).                                                                                                                                                                                                                                                                                                           |  |
| k3 | Ключ поля данных (число в шестнадцатеричной системе счисления: 0FFFFFFF).                                                                                                                                                                                                                                                                                          |  |
| С  | Маска используемых шин:  • 1 — CAN 1;  • 2 — CAN 2.                                                                                                                                                                                                                                                                                                                |  |
| l1 | (Только для <b>t</b> = 1) Номер бита в последовательности данных, полученных с шины. С этого номера начинается параметр (десятичное число: 164).                                                                                                                                                                                                                   |  |

| 12 | (Только для $\mathbf{t} = 1$ ) Длина параметра в битах (десятичное число: 132).                                                                                                                                                    |  |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 13 | <ul> <li>(Только для t = 1) Порядок байтов в посылке:</li> <li>0 — little endian (от младшего к старшему);</li> <li>1 — big endian (от старшего к младшему).</li> </ul>                                                            |  |
| 14 | (Только для <b>t</b> = 1) Коэффициент. Число с десятичной точкой, на которое будет умножаться параметр. Допустимый диапазон соответствует диапазону числа с плавающей точкой одинарной точности, описываемого стандартом IEEE 745. |  |
| 15 | (Только для <b>t</b> = 1) Смещение. Число с десятичной точкой, которое будет плюсоваться к параметру. Допустимый диапазон соответствует диапазону числа с плавающей точкой одинарной точности, описываемого стандартом IEEE 745.   |  |
| d1 | (Только для ${f t}=2$ ) Первый бит состояния (десятичное число: 164).                                                                                                                                                              |  |
| d2 | (Только для ${f t}=2$ ) Количество бит состояния (десятичное число: 132).                                                                                                                                                          |  |
| d3 | (Только для $\mathbf{t} = 2$ ) Номер бита в последовательности данных, полученных с шины. Этот бит отображает статус параметра (десятичное число: 164).                                                                            |  |
| d4 | <ul> <li>(Только для t = 2) Использование бита статуса:</li> <li>1 — использовать бит статуса;</li> <li>0 — не использовать бит статуса.</li> </ul>                                                                                |  |
| d5 | (Только для <b>t</b> = 2) Значение бита статуса, которое соответствует валидному состоянию (0 или 1).                                                                                                                              |  |
| d6 | <ul> <li>(Только для t = 2) Порядок байтов в посылке:</li> <li>0 — little endian (от младшего к старшему);</li> <li>1 — big endian (от старшего к младшему).</li> </ul>                                                            |  |

## **CANGENERICTYPEn**

Установка типа записи произвольного параметра с шины CAN.

- Доступна через сервер и SMS.
- Версия прошивки: 13.31 и выше.
- Команда запроса: GCANGENERICTYPEn.

# Формат команды:

CANGENERICTYPEn=type;

# Параметры:

| n    | Порядковый номер параметра (01CAN_GENERIC_PARAMS_NUM). |
|------|--------------------------------------------------------|
| type | Тип записи (165534).                                   |

## Пример команды:

CANGENERICTYPE01=25;

# Пример ответа:

CANGENERICTYPE01=25;

## **CANGENERICCONTROL**

Запрос последнего полученного значения произвольного параметра с шины CAN.

- Доступна через сервер и SMS.
- Версия прошивки: 01.05-а4 и выше.
- Команда запроса: GCANGENERICCONTROL.

# Формат команды:

GCANGENERICCONTROLn;

## Формат ответа:

CANGENERICCONTROLn=a,t,b;

# Параметры:

| n | Порядковый номер параметра (1 — CAN_GENERIC_PARAMS_NUM).                                                                                                                                                                            |  |
|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| a | <ul> <li>Наличие новых данных с момента предыдущего запроса:</li> <li>0 — нет новых данных;</li> <li>1 — новые данные.</li> </ul>                                                                                                   |  |
| b | Последнее полученное с шины значение параметра. формат зависит от параметра <b>t</b> : • GENERIC_CAN_TYPE_LEVEL — с десятичной точкой (float); • GENERIC_CAN_TYPE_DISCRETE — беззнаковое целое число (uint), в HEX, с префиксом 0х. |  |

# Пример команды:

GCANGENERICCONTROL1;

# Пример ответа:

CANGENERICCONTROL1=0,0x09;

# GenericCanParamTypes

Типы произвольных параметров CAN.

| GENERIC_CAN_TYPE_INVALID = 0  | Недопустимое значение. |
|-------------------------------|------------------------|
| GENERIC_CAN_TYPE_LEVEL = 1    | Уровневый параметр.    |
| GENERIC_CAN_TYPE_DISCRETE = 2 | Дискретный параметр.   |

# CanIdType

Типы CAN ID.

| CAN_ID_TYPE_OFF = Ou                | 0 — параметр отключен.                                             |
|-------------------------------------|--------------------------------------------------------------------|
| CAN_ID_TYPE_STANDARD = 1u           | 1 — стандартный ID (11 бит).                                       |
| CAN_ID_TYPE_EXTENDED = 2u           | 2 — расширенный ID (29 бит).                                       |
| CAN_ID_TYPE_COMPOSITE_STANDARD = 3u | 3 — составной ID на основе стандартного (ID 11 бит + ID в данных). |
| CAN_ID_TYPE_COMPOSITE_EXTENDED = 4u | 4 — составной ID на основе расширенного (ID 29 бит + ID в данных). |

# Запросы в активном режиме CAN

| Список команд | Описание                                 |
|---------------|------------------------------------------|
| CANREQUEST    | Настройка запроса в активном режиме CAN. |

# **CANREQUEST**

Настройка запроса в активном режиме CAN.

- Доступна через сервер и SMS.
- Версия прошивки: 01.05-а4 и выше.
- Команда запроса: GCANREQUEST.

# Формат команды:

CANREQUESTn=p,i1,i2,dNum,d1,d2,d3,d4,d5,d6,d7,d8,c,cntr;

# Параметры:

| n    | Порядковый номер запроса (1 — CAN_REQUESTS_NUM).                                                                                                                                                       |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| р    | Период запроса, в секундах (065535). 0 — запрос отключен.                                                                                                                                              |
| i1   | Тип CAN ID (CAN_ID_STANDARD в CanIdType или CAN_ID_EXTENDED в CanIdType или CAN_ID_TYPE_OFF в CanIdType).                                                                                              |
| i2   | <ul> <li>CAN ID параметра (число в шестнадцатеричной системе счисления в зависимости от параметра i1):</li> <li>i1 = CAN_ID_STANDARD: 07FF;</li> <li>i1 = CAN_ID_EXTENDED: 01FFFFFFF.</li> </ul>       |
| dNum | Количество данных, в байтах (08).                                                                                                                                                                      |
| d1d8 | Данные, передаваемые в запросе (число в шестнадцатеричной системе счисления, без 0x (0FF)). В запросе передаются первые <b>dNum</b> байт. Необходимо заполнять все 8 полей, даже если <b>dNum</b> < 8. |
| c    | Маска используемых шин: • 1 — CAN 1; • 2 — CAN 2.                                                                                                                                                      |
| cntr | Количество запросов, которые нужно отправить ( $-1$ 2147483647). При <b>cntr</b> = $-1$ отправлять вечно.                                                                                              |

# Тахограф

| Список команд  | Описание                                                                                 |
|----------------|------------------------------------------------------------------------------------------|
| TACHOMODE      | Выбор типа тахографа и способа его подключения.                                          |
| TACHOCARDn     | Запрос последней считанной с тахографа карты водителя.                                   |
| TACHOCARDTIMEn | Установка времени последнего считывания карты водителя с тахографа.                      |
| TACHOTRANSFER  | Внеочередная отправка данных с карты водителя на сервер.                                 |
| TACHODI        | Запрос последнего полученного номера карты водителя (водителей).                         |
| TACHOTCO       | Запрос последнего полученного состояния тахографа (ТСО1).                                |
| TACHOSTATE     | Запрос состояния подключения к тахографу.                                                |
| TACHOSOURCEDI  | Выбор источника, с которого контроллер будет сохранять номера карт водителя (водителей). |
| TACHOSOURCETCO | Выбор источника, с которого контроллер будет сохранять данные тахографа (TCO1).          |

| Список групп параметров | Описание                     |
|-------------------------|------------------------------|
| TachoMode               | Тип и подключение тахографа. |

## **TACHOMODE**

Выбор типа тахографа и способа его подключения.

- Доступна через сервер и SMS.
- Версия прошивки: 13.21 и выше.
- Команда запроса: GTACHOMODE.

# Формат команды:

TACHOMODE=mode;

# Параметры:

| mode | Тип и способ подключения тахографа (см. TachoMode). |
|------|-----------------------------------------------------|
|------|-----------------------------------------------------|

# Пример команды:

TACHOMODE=3;

# Пример ответа:

TACHOMODE=3;

## **TACHOCARDn**

Запрос последней считанной с тахографа карты водителя.

- Доступна через сервер и SMS.
- Версия прошивки: 13.21 и выше.
- Команда запроса: GTACHOCARD.

# Формат команды:

TACHOCARDn=card;

## Параметры:

| n    | Порядковый номер водителя (12).                                                      |
|------|--------------------------------------------------------------------------------------|
| card | Номер карты водителя— последней считанной (и переданной на сервер в виде ddd файла). |

# Пример команды:

GTACHOCARD1;

# Пример ответа:

TACHOCARD1=RUD0000136511200;

#### **TACHOCARDTIMEn**

Установка времени последнего считывания карты водителя с тахографа.

- Доступна через сервер и SMS.
- Версия прошивки: 13.21 и выше.
- Команда запроса: GTACHOCARDTIMEn.

# Формат команды:

TACHOCARDTIMEn=time;

## Параметры:

| n    | Порядковый номер карты водителя (12).                                                          |  |
|------|------------------------------------------------------------------------------------------------|--|
| time | Время последнего считывания (и передачи на сервер) карты водителя, в сутках с 1 января 1970 г. |  |

**Примечание.** Установка 0 для данного параметра инициирует внеочередное считывание и отправку данных с карты водителя (например, TACHOCARDTIME1=0; для карты водителя 1).

## Пример команды:

GTACHOCARDTIME1;

## Пример ответа:

TACHOCARDTIME1=19383;

#### **TACHOTRANSFER**

Внеочередная отправка данных с карты водителя на сервер.

- Доступна через сервер и SMS.
- Версия прошивки: 13.21 и выше.
- Команда запроса: GTACHOTRANSFER.

## Формат команды:

TACHOTRANSFER;

## Формат ответа:

TACHOTRANSFER=time1,time2;

## Параметры:

| time1 | Время последнего считывания (и передачи на сервер) карты водителя 1, в сутках с 1 января 1970 г. |
|-------|--------------------------------------------------------------------------------------------------|
| time2 | Время последнего считывания (и передачи на сервер) карты водителя 2, в сутках с 1 января 1970 г. |

**Примечание.** При выполнении команды для обоих параметров времени устанавливаются значение 0, что инициирует внеочередную отправку данных.

## Пример команды:

GTACHOTRANSFER;

# Пример ответа:

TACHOTRANSFER=19383,19030;

## **TACHODI**

Запрос последнего полученного номера карты водителя (водителей).

- Доступна через сервер и SMS.
- Версия прошивки: 13.21 и выше.
- Команды запроса: TACHODI, GTACHODI. Обе команды работают одинаково, на запрос.

## Формат команды:

TACHODI=n;

# Формат ответа:

TACHODI=n,di,time;

# Параметры:

| n    | <ul> <li>Источник данных:</li> <li>0 — данные непосредственно с тахографа;</li> <li>1 — данные с шины CAN (J1939);</li> <li>2 — данные с шины CAN (UDF);</li> <li>3 — данные с шины CAN1 (J1939);</li> <li>4 — данные с шины CAN1 (UDF);</li> <li>5 — данные с шины CAN2 (J1939);</li> <li>6 — данные с шины CAN2 (UDF).</li> </ul> |  |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| di   | Driver's Identification, номера карт водителей с разделителем * после каждого водителя.                                                                                                                                                                                                                                             |  |
| time | Время, прошедшее с момента последнего получения данных о номерах карт водителей, в миллисекундах.                                                                                                                                                                                                                                   |  |

# Пример команды:

GTACHODI=0;

# Пример ответа:

TACHODI=0,RUD0000137092101\*\*,722;

## **TACHOTCO**

Запрос последнего полученного состояния тахографа (ТСО1).

- Доступна через сервер и SMS.
- Версия прошивки: 13.21 и выше.
- Команды запроса: ТАСНОТСО, GTACHOTCO. Обе команды работают одинаково, на запрос.

#### Формат команды:

GTACHOTCO=n;

## Формат ответа:

TACHOTCO=n,recvTime,saveTime:d1ws,d2ws,dr,d1trs,dcd1,overspeed,d2trs,dcd2,se,he,tp,di,toss,tvs;

## Параметры:

| n         | <ul> <li>Источник данных:</li> <li>0 — данные непосредственно с тахографа;</li> <li>1 — данные с шины CAN (J1939);</li> <li>2 — данные с шины CAN1 (J1939);</li> <li>3 — данные с шины CAN2 (J1939).</li> </ul> |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| recvtime  | Время, прошедшее с момента последнего получения данных тахографа (TCO1), в миллисекундах.                                                                                                                       |
| savetime  | Время, прошедшее с момента последнего сохранения данных тахографа (TCO1), в миллисекундах.                                                                                                                      |
| d1ws      | Driver 1 working state 1612.                                                                                                                                                                                    |
| d2ws      | Driver 2 working state 1613.                                                                                                                                                                                    |
| dr        | Drive recognize 1611.                                                                                                                                                                                           |
| d1trs     | Driver 1 Time Related States 1617.                                                                                                                                                                              |
| dcd1      | Driver card, driver 1 1615.                                                                                                                                                                                     |
| overspeed | Overspeed 1614.                                                                                                                                                                                                 |
| d2trs     | Driver 2 Time Related States 1618.                                                                                                                                                                              |
| dcd2      | Driver card, driver 2 1616.                                                                                                                                                                                     |
| se        | System event 1622.                                                                                                                                                                                              |
| he        | Handling information 1621.                                                                                                                                                                                      |
| tp        | Tachograph performance 1620.                                                                                                                                                                                    |
| di        | Direction indicator 1619.                                                                                                                                                                                       |
| toss      | Tachograph output shaft speed 1623.                                                                                                                                                                             |
| tvs       | Tachograph vehicle speed 1624.                                                                                                                                                                                  |

**Примечание.** Значения параметров соответствуют значениям полей TCO1 (Tachograph) протокола CAN J1939.

| Пример команд | IHI: |
|---------------|------|

GTACHOTCO=0;

# Пример ответа:

TACHOTCO=0,563,471485:1,0,3,0,1,3,0,0,3,0,0,3,65535,0;

## **TACHOSTATE**

Запрос состояния подключения к тахографу.

- Доступна через сервер и SMS.
- Версия прошивки: 13.26 и выше.
- Команды запроса: TACHOSTATE, GTACHOSTATE. Обе команды работают одинаково, на запрос.

# Формат команды:

TACHOSTATE;

## Формат ответа:

TACHOSTATE=state,card,progress;

# Параметры:

| state    | Состояние подключения к тахографу:  • 0 — нет подключения;  • 1 — успешное подключение к тахографу;  • 2 — идет загрузка ddd файла;  • 3 — ddd файл загружен. |  |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| card     | Номер карты водителя, с которой идет загрузка ddd файла.                                                                                                      |  |
| progress | Количество байтов ddd файла, загруженных с карты водителя.                                                                                                    |  |

# Пример команды:

GTACHOSTATE;

# Пример ответа:

TACHOSTATE=2,1,13400;

## **TACHOSOURCEDI**

Выбор источника, с которого контроллер будет сохранять номера карт водителя (водителей).

- Доступна через сервер и SMS.
- Версия прошивки: 13.21 и выше.
- Команда запроса: GTACHOSOURCEDI.

# Формат команды:

TACHOSOURCEDI=source;

## Параметры:

| source | <ul> <li>Источник, с которого контроллер сохраняет номера карт водителя:</li> <li>0 — отключено.</li> <li>1 — данные непосредственно с тахографа.</li> <li>2 — данные с шины CAN1 и CAN2 (J1939).</li> <li>4 — данные с шины CAN (UDF). Шина зависит от активного режима. Если CAN1ACTIVE=1 и CAN2ACTIVE=1, то работать будет шина CAN2. Если CAN1ACTIVE=1 и CAN2ACTIVE=0, то работать будет шина CAN1. Если CAN1ACTIVE=0 и CAN2ACTIVE=0, то CAN udf работать не будет.</li> <li>7 — данные со всех источников сразу.</li> <li>8 — данные с шины CAN1 (J1939).</li> <li>16 — данные с шины CAN2 (J1939).</li> <li>32 — данные с шины CAN2 (UDF).</li> </ul> |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

# Пример команды:

TACHOSOURCEDI=7;

# Пример ответа:

TACHOSOURCEDI=7;

#### **TACHOSOURCETCO**

Выбор источника, с которого контроллер будет сохранять данные тахографа (ТСО1).

- Доступна через сервер и SMS.
- Версия прошивки: 13.21 и выше.
- Команда запроса: GTACHOSOURCETCO.

#### Формат команды:

TACHOSOURCETCO=source;

#### Параметры:

|  | Источник, с которого контроллер сохраняет данные тахографа:  • 0 — отключено;  • 1 — данные непосредственно с тахографа;  • 2 — данные с шины CAN (J1939);  • 3 — данные со всех источников сразу;  • 4 — данные с шины CAN1 (J1939);  • 8 — данные с шины CAN2 (J1939). |
|--|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|--|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

## Пример команды:

TACHOSOURCETCO=3;

## Пример ответа:

TACHOSOURCETCO=3;

**Примечание.** Записи параметров с тахографа при изменении данных сохраняются с интервалом не менее CANPERIOD, независимо от шины, к которой этот тахограф подключен (CAN или RS-485). При CANPERIOD = 0 и CANPERIOD > 600 минимальный интервал сохранения составляет 10 минут. В случае отсутствия изменений в данных запись сохраняется с периодом в 10 минут.

# **TachoMode**

Тип и подключение тахографа.

| TM_0FF = 0            | 0 — тахограф не подключен.                 |
|-----------------------|--------------------------------------------|
| TM_SHTRIH_CAN_1 = 1   | 1 — ШТРИХ-ТахоRUS, подключен по CAN (1).   |
| TM_SHTRIH_RS485_1 = 2 | 2 — ШТРИХ-ТахоRUS, подключен по RS485 (1). |
| TM_VDO_RS232_1 = 3    | 3 — тахограф VDO, подключен по RS232 (1).  |
| TM_SHTRIH_CAN_2 = 4   | 4 — ШТРИХ-ТахоRUS, подключен по CAN (2).   |
| TM_SHTRIH_RS485_2 = 5 | 5 — ШТРИХ-ТахоRUS, подключен по RS485 (2). |

# Интерфейс USB CDC

| Список команд | Описание                                |
|---------------|-----------------------------------------|
| CDCMODE       | Выбор режима работы интерфейса USB CDC. |

| Список групп параметров | Описание           |
|-------------------------|--------------------|
| CdcMode                 | Режимы работы CDC. |

## **CDCMODE**

Выбор режима работы интерфейса USB CDC.

- Доступна через сервер и SMS.
- Версия прошивки: AGXX-01.02-а4 и выше.
- Команда запроса: GCDCMODE.

# Формат команды:

CDCMODE=mode;

# Параметры:

| mode | Режим (см. CdcMode). |
|------|----------------------|

# Пример команды:

CDCMODE=2;

# Пример ответа:

CDCMODE=2;

# CdcMode

Режимы работы CDC.

| CDCM_MOUSE = Ou           | 0 — выдача данных с навигационного приемника в формате NMEA RMC (в навигационное программное обеспечение).                                                                 |
|---------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CDCM_ECHOTEST = 1u        | 1 — эхо.                                                                                                                                                                   |
| CDCM_MODEM1 = 2u          | 2 — передача данных с GSM модема 1 напрямую в программное обеспечение на компьютере.                                                                                       |
| CDCM_DEBUG = 3u           | 3 — передача отладочной информации на виртуальный СОМ-порт компьютера. Набор передаваемой информации определяется включенными типами логов (в программе АвтоГРАФ.GSMConf). |
| CDCM_WIFI = 4u            | 4 — передача данных с модуля Wi-Fi на виртуальный СОМ-порт компьютера.                                                                                                     |
| CDCM_MODEM2 = 5u          | 5 — передача данных с GSM модема 2 (АвтоГРАФ-АСН) напрямую в программное обеспечение на компьютере.                                                                        |
| CDCM_NTRIP = 6u           | 6 — обмен данными с сервером дифференциальных поправок (NTRIP).                                                                                                            |
| CDCM_CMDCONTROL = 7u      | 7 — обработка команд (для контроллеров АвтоГРАФ-Mobile X).                                                                                                                 |
| CDCM_RS232_1_EXT_NAV = 8u | 8 — выдача данных с внешнего навигационного приемника, подключенного по интерфейсу RS-232(1), в формате NMEA (в навигационное программное обеспечение).                    |

# Акселерометр

Акселерометр в контроллере калибруется автоматически. Но этот процесс можно при необходимости проконтролировать и скорректировать.

| Список команд  | Описание                                                                                |
|----------------|-----------------------------------------------------------------------------------------|
| GACCELVECTORS  | Запись векторов ускорения (продольных и вертикальных).                                  |
| ACCELMATRIX    | Запрос и запись (опционально) матрицы поворота вектора ускорения.                       |
| RECALIBRATION  | Сброс калибровки акселерометра в контроллере.                                           |
| FIXCALIBRATION | Калибровка акселерометра по собранным векторам ускорений (подробнее см. GACCELVECTORS). |
| GACCELRAW      | Запрос текущего значения вектора ускорения.                                             |

## **GACCELVECTORS**

Запись векторов ускорения (продольных и вертикальных).

- Доступна через сервер и SMS.
- Версия прошивки: 01.02-а4 и выше.

#### Формат ответа:

ACCELVECTORS = directX, directY, directZ(directN), zeroX, zeroY, zeroZ(zeroN);

# Параметры:

| directX directY         Компоненты X, Y и Z вектора продольного ускорения (направленного вдоль автомобиля), в условных единицах (–21474836482147483647). |                                                                                                   |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--|
| directN                                                                                                                                                  | Продолжительность сбора продольного ускорения в контроллере, в секундах (04294967295).            |  |
| zeroX zeroY zeroZ                                                                                                                                        | Компоненты X, Y и Z вектора вертикального ускорения, в условных единицах (–21474836482147483647). |  |
| <b>zeroN</b> Продолжительность сбора вертикального ускорения, в секундах (04294967                                                                       |                                                                                                   |  |

# Пример команды:

GACCELVECTORS;

# Пример ответа:

ACCELVECTORS=-10,30,15(4),0,0,0(0);

## **ACCELMATRIX**

Запрос и запись (опционально) матрицы поворота вектора ускорения.

- Доступна через сервер и SMS.
- Версия прошивки: 01.02-а4 и выше.
- Команда запроса: GACCELMATRIX.

## Формат ответа:

ACCELMATRIX=isCalibrated,directN:a11,a12,a13:a21,a22,a23:a31,a32,a33;

# Параметры:

| isCalibrated                              | Статус выполнения калибровки акселерометра:  • 1 — калибровка выполнена;  • 0 — калибровка не выполнялась.                                                                                                                                             |  |
|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| directN                                   | Продолжительность сбора продольного ускорения контроллера, который использовался при калибровке, в секундах (04294967295).                                                                                                                             |  |
| a11 a12 a13 a21<br>a22 a23 a31 a32<br>a33 | Элементы матрицы 3×3, при умножении на которую вектор ускорения приводится к калиброванному значению (с десятичной точкой). Допустимый диапазон соответствует диапазону числа с плавающей точкой одинарной точности, описываемого стандартом IEEE 745. |  |

## Пример команды:

GACCELMATRIX;

## Пример ответа:

ACCELMATRIX=1,18:0.000247838,0.00242128,-0.000282824:-0.00243428,0.000260957,0.000100917:0.000129842,0.000270767, 0.00243183;

**Внимание!** Рекомендуется только считывать параметры. Запись неправильных параметров может приводить к неправильной калибровке акселерометра.

## **RECALIBRATION**

Сброс калибровки акселерометра в контроллере.

- Рекомендуется использовать при смене положения контроллера на объекте мониторинга.
- Доступна через сервер и SMS.
- Версия прошивки: 01.02-а4 и выше.
- Команда запроса: —

## Формат команды:

RECALIBRATION;

# Пример команды:

RECALIBRATION;

# Пример ответа:

RECALIBRATION;

## **FIXCALIBRATION**

Калибровка акселерометра по собранным векторам ускорений (подробнее см. GACCELVECTORS).

- Доступна через сервер и SMS.
- Версия прошивки: 01.02-а4 и выше.
- Команда запроса: —

# Формат ответа:

FIXCALIBRATION=isCalibrated,directN;

## Параметры:

| isCalibrated | Статус выполнения калибровки акселерометра:  • 1 — калибровка выполнена;  • 0 — калибровка не выполнялась.   |
|--------------|--------------------------------------------------------------------------------------------------------------|
| directN      | Продолжительность сбора продольного ускорения контроллера, который использовался при калибровке, в секундах. |

# Пример команды:

FIXCALIBRATION;

# Пример ответа:

FIXCALIBRATION=1,4;

## **GACCELRAW**

Запрос текущего значения вектора ускорения.

- Доступна через сервер и SMS.
- Версия прошивки: 13.22 и выше.

#### Формат ответа:

ACCELRAW=rawX,rawY,rawZ:vehicleX,vehicleY,vehicleZ;

# Параметры:

| rawX rawY rawZ                | Компоненты X, Y и Z вектора ускорения, действующего в настоящий момент на контроллер, в условных единицах.            |
|-------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| vehicleX vehicleY<br>vehicleZ | Компоненты X, Y и Z вектора ускорения, действующего в настоящий момент на транспортное средство, в м/с <sup>2</sup> . |

# Пример команды:

GACCELRAW;

# Пример ответа:

ACCELRAW=-255,-14,1287:-0.940214,0.370395,9.71189;

# Контроль качества вождения

| Список команд    | Описание                                                                                           |
|------------------|----------------------------------------------------------------------------------------------------|
| SPEEDPOROGn      | Установка порогов превышения скорости.                                                             |
| MOTSPEEDPOROG    | Установка порога превышения скорости для определения движения по навигационному приемнику.         |
| MOTACCELPOROG    | Установка порога превышения ускорения для определения начала движения по акселерометру.            |
| MOTACCELSTICK    | Установка времени удержания признака движения по акселерометру после прекращения ускорения.        |
| DRVMOBILE        | Выбор режима работы качества вождения при нестационарной установке.                                |
| DRVACCELPOROG    | Установка порога превышения ускорения при разгоне.                                                 |
| DRVBRKPOROG      | Установка порога превышения ускорения при торможении.                                              |
| DRVEXTRPOROG     | Установка порога превышения ускорения при экстренном торможении.                                   |
| DRVRIGHTPOROG    | Установка порога превышения центробежного ускорения при повороте направо (резкий поворот направо). |
| DRVLEFTPOROG     | Установка порога превышения центробежного ускорения при повороте налево (резкий поворот налево).   |
| DRVHOLEPOROG     | Установка порога превышения ускорения в вертикальном направлении (неровности дороги).              |
| DRVTILTPOROG     | Установка порога превышения бокового уклона при определении опрокидывания.                         |
| DRVACCELTIME     | Установка длительности превышения ускорения при разгоне.                                           |
| DRVBRKTIME       | Установка длительности превышения ускорения при торможении.                                        |
| DRVEXTRTIME      | Установка длительности превышения ускорения при экстренном торможении.                             |
| DRVRIGHTTIME     | Установка длительности превышения центробежного ускорения при повороте направо.                    |
| DRVLEFTTIME      | Установка длительности превышения центробежного ускорения при повороте налево.                     |
| DRVHOLETIME      | Установка длительности превышения ускорения в вертикальном направлении (неровности дороги).        |
| DRVTILTTIME      | Установка длительности превышения порога бокового уклона при определении опрокидывания.            |
| TESTECODRIVE     | Включение режима тестовой поездки.                                                                 |
| AUTOECODRIVE     | Автоматическая установка порогов ускорений по показателям предыдущей поездки.                      |
| ECODRIVINGRECORD | Запрос последних зафиксированных событий контроля качества вождения.                               |

| Список групп параметров | Описание                                                   |
|-------------------------|------------------------------------------------------------|
| EcoDriveAxis            | Тип события (или оси) контроля качества вождения.          |
| EcoDriveVehicleType     | Тип транспортного средства для контроля качества вождения. |

## **SPEEDPOROGn**

Установка порогов превышения скорости.

- Доступна через сервер и SMS.
- Версия прошивки: 01.02-а4 и выше.
- Команда запроса: GSPEEDPOROGn.

# Формат команды:

SPEEDPOROGn=speed;

## Параметры:

| n     | Номер порога (13).                                                          |
|-------|-----------------------------------------------------------------------------|
| speed | Порог скорости, при превышении которого возникнет событие, в км/ч (010000). |

## Пример команды:

SPEEDPOROG1=60;

# Пример ответа:

SPEEDPOROG1=60;

## **MOTSPEEDPOROG**

Установка порога превышения скорости для определения движения по навигационному приемнику.

- Доступна через сервер и SMS.
- Версия прошивки: 13.24 и выше.
- Команда запроса: GMOTSPEEDPOROG.

# Формат команды:

MOTSPEEDPOROG=s;

# Параметры:

| Ĺ | c | Порог скорости, в км/ч (0,125,0). Если скорость с навигационного приемника   |
|---|---|------------------------------------------------------------------------------|
| Ľ |   | превышает этот порог, то контроллер определяет наличие движения по скорости. |

# Пример команды:

MOTSPEEDPOROG=4.0;

# Пример ответа:

MOTSPEEDPOROG=4.0;

## **MOTACCELPOROG**

Установка порога превышения ускорения для определения начала движения по акселерометру.

- Доступна через сервер и SMS.
- Версия прошивки: 13.24 и выше.
- Команда запроса: GMOTACCELPOROG.

# Формат команды:

MOTACCELPOROG=a;

# Параметры:

|   | Порог ускорения, в м/ $c^2$ (01000). Если среднеквадратичное отклонение вектора |
|---|---------------------------------------------------------------------------------|
| a | ускорения превышает этот порог в течение периода величиной более 1 секунды,     |
|   | то контроллер определяет наличие движения по акселерометру.                     |

# Пример команды:

MOTACCELPOROG=0.1;

# Пример ответа:

MOTACCELPOROG=0.1;

#### MOTACCELSTICK

Установка времени удержания признака движения по акселерометру после прекращения ускорения.

- Доступна через сервер и SMS.
- Версия прошивки: 13.24 и выше.
- Команда запроса: GMOTACCELSTICK.

## Формат команды:

MOTACCELSTICK=t;

## Параметры:

| ĺ |   | Время удержания, в секундах (165534). В течение этого времени после      |
|---|---|--------------------------------------------------------------------------|
| ı | t | прекращения ускорения контроллер будет продолжать определять движение по |
| I |   | акселерометру.                                                           |

## Пример команды:

MOTACCELSTICK=5;

## Пример ответа:

MOTACCELSTICK=5;

**Примечание.** Следует учитывать, что при установке для параметра **t** значения, превышающего сутки, признак движения сможет сброситься до выхода из-за автоматического ежесуточного перезапуска контроллера.

#### **DRVMOBILE**

Выбор режима работы качества вождения при нестационарной установке.

- Доступна через сервер и SMS.
- Версия прошивки: 13.30 и выше.
- Команда запроса: GDRVMOBILE.

#### Формат команды:

DRVMOBILE=mode;

#### Параметры:

|      | Режим работы качества вождения:             |
|------|---------------------------------------------|
| mode | • 1 — нестационарная (мобильная) установка; |
|      | • 0 — стационарная установка.               |

#### Пример команды:

DRVMOBILE=0;

## Пример ответа:

DRVMOBILE=0;

**Примечание.** В режиме стационарной установки контроллер калибрует акселерометр и замеряет превышения ускорения по нему. В режиме нестационарной (мобильной) установки контроллер замеряет ускорения по координатам со спутника, так как расположение контроллера внутри транспортного средства может меняться. При этом определение движения по акселерометру работает и в том, и в другом режиме.

# **DRVACCELPOROG**

Установка порога превышения ускорения при разгоне.

- Доступна через сервер и SMS.
- Версия прошивки: 01.02-а4 и выше.
- Команда запроса: GDRVACCELPOROG.

# Формат команды:

DRVACCELPOROG=threshold;

## Параметры:

| threshold | Уровень ускорения при разгоне, во время превышения которого начинает фиксироваться нарушение, в м/ $c^2$ (01000). |
|-----------|-------------------------------------------------------------------------------------------------------------------|
|-----------|-------------------------------------------------------------------------------------------------------------------|

# Пример команды:

DRVACCELPOROG=5.3;

# Пример ответа:

DRVACCELPOROG=5.3;

## **DRVBRKPOROG**

Установка порога превышения ускорения при торможении.

- Доступна через сервер и SMS.
- Версия прошивки: 01.02-а4 и выше.
- Команда запроса: GDRVBRKPOROG.

# Формат команды:

DRVBRKPOROG=threshold;

# Параметры:

| threshold | Уровень ускорения при торможении, во время превышения которого начинает фиксироваться нарушение, в м/с <sup>2</sup> (01000). |
|-----------|------------------------------------------------------------------------------------------------------------------------------|
|-----------|------------------------------------------------------------------------------------------------------------------------------|

# Пример команды:

DRVBRKPOROG=5.3;

# Пример ответа:

DRVBRKPOROG=5.3;

## **DRVEXTRPOROG**

Установка порога превышения ускорения при экстренном торможении.

- Доступна через сервер и SMS.
- Версия прошивки: 01.02-а4 и выше.
- Команда запроса: GDRVEXTRPOROG.

# Формат команды:

DRVEXTRPOROG=threshold;

# Параметры:

| threshold | Уровень ускорения, при превышении которого начинает фиксироваться нарушение, в м/с <sup>2</sup> (01000). |
|-----------|----------------------------------------------------------------------------------------------------------|
|-----------|----------------------------------------------------------------------------------------------------------|

## Пример команды:

DRVEXTRPOROG=15.3;

# Пример ответа:

DRVEXTRPOROG=15.3;

## **DRVRIGHTPOROG**

Установка порога превышения центробежного ускорения при повороте направо (резкий поворот направо).

- Доступна через сервер и SMS.
- Версия прошивки: 01.02-а4 и выше.
- Команда запроса: GDRVRIGHTPOROG.

# Формат команды:

DRVRIGHTPOROG=threshold;

# Параметры:

| threshold | Уровень ускорения, при превышении которого начинает фиксироваться нарушение, в м/с <sup>2</sup> (01000). |
|-----------|----------------------------------------------------------------------------------------------------------|
|-----------|----------------------------------------------------------------------------------------------------------|

## Пример команды:

DRVRIGHTPOROG=5.4;

## Пример ответа:

DRVRIGHTPOROG=5.4;

## **DRVLEFTPOROG**

Установка порога превышения центробежного ускорения при повороте налево (резкий поворот налево).

- Доступна через сервер и SMS.
- Версия прошивки: 01.02-а4 и выше.
- Команда запроса: GDRVLEFTPOROG.

# Формат команды:

DRVLEFTPOROG=threshold;

## Параметры:

| threshold | Уровень ускорения, при превышении которого начинает фиксироваться нарушение, в м/ $c^2$ (01000). |
|-----------|--------------------------------------------------------------------------------------------------|
|-----------|--------------------------------------------------------------------------------------------------|

## Пример команды:

DRVLEFTPOROG=5.4;

# Пример ответа:

DRVLEFTPOROG=5.4

## **DRVHOLEPOROG**

Установка порога превышения ускорения в вертикальном направлении (неровности дороги).

- Доступна через сервер и SMS.
- Версия прошивки: 01.02-а4 и выше.
- Команда запроса: GDRVHOLEPOROG.

# Формат команды:

DRVHOLEPOROG=threshold;

# Параметры:

| threshold | Уровень ускорения, при превышении которого начинает фиксироваться нарушение, в м/ $c^2$ (01000). |
|-----------|--------------------------------------------------------------------------------------------------|
|-----------|--------------------------------------------------------------------------------------------------|

## Пример команды:

DRVHOLEPOROG=30.5;

# Пример ответа:

DRVHOLEPOROG=30.5;

#### **DRVTILTPOROG**

Установка порога превышения бокового уклона при определении опрокидывания.

- Доступна через сервер и SMS.
- Версия прошивки: 13.30 и выше.
- Команда запроса: GDRVTILTPOROG.

# Формат команды:

DRVTILTPOROG=slope;

## Параметры:

| slope | Боковой уклон, при превышении которого начинает фиксироваться нарушение, безразмерная величина (01000). |
|-------|---------------------------------------------------------------------------------------------------------|
|-------|---------------------------------------------------------------------------------------------------------|

## Пример команды:

DRVTILTPOROG=1.0;

## Пример ответа:

DRVTILTPOROG=1.0;

**Примечание.** Боковой уклон показывает отношение подъема участка к его ширине. Так, при угле наклона 45° боковой уклон будет равен 1,0. При превышении этого уклона будет зафиксировано опрокидывание.

# **DRVACCELTIME**

Установка длительности превышения ускорения при разгоне.

- Доступна через сервер и SMS.
- Версия прошивки: 01.02-а4 и выше.
- Команда запроса: GDRVACCELTIME.

# Формат команды:

DRVACCELTIME=duration;

# Параметры:

| duration |
|----------|
|----------|

## Пример команды:

DRVACCELTIME=500;

# Пример ответа:

DRVACCELTIME=500;

## **DRVBRKTIME**

Установка длительности превышения ускорения при торможении.

- Доступна через сервер и SMS.
- Версия прошивки: 01.02-а4 и выше.
- Команда запроса: GDRVBRKTIME.

# Формат команды:

DRVBRKTIME=duration;

## Параметры:

| duration | Продолжительность ускорения, при превышении которой начинает фиксироваться нарушение, в миллисекундах (04294967295). |
|----------|----------------------------------------------------------------------------------------------------------------------|
|----------|----------------------------------------------------------------------------------------------------------------------|

# Пример команды:

DRVBRKTIME=500;

# Пример ответа:

DRVBRKTIME=500;

## **DRVEXTRTIME**

Установка длительности превышения ускорения при экстренном торможении.

- Доступна через сервер и SMS.
- Версия прошивки: 01.02-а4 и выше.
- Команда запроса: GDRVEXTRTIME.

# Формат команды:

DRVEXTRTIME=duration;

# Параметры:

| duration | Продолжительность ускорения, при превышении которой начинает фиксироваться нарушение, в миллисекундах (04294967295). |
|----------|----------------------------------------------------------------------------------------------------------------------|
|----------|----------------------------------------------------------------------------------------------------------------------|

## Пример команды:

DRVEXTRTIME=500;

# Пример ответа:

DRVEXTRTIME=500;

#### **DRVRIGHTTIME**

Установка длительности превышения центробежного ускорения при повороте направо.

- Доступна через сервер и SMS.
- Версия прошивки: 01.02-а4 и выше.
- Команда запроса: GDRVRIGHTTIME.

# Формат команды:

DRVRIGHTTIME=duration;

#### Параметры:

| duration | Продолжительность ускорения, при превышении которой начинает фиксироваться |
|----------|----------------------------------------------------------------------------|
| duration | нарушение, в миллисекундах (04294967295).                                  |

# Пример команды:

DRVRIGHTTIME=700;

# Пример ответа:

DRVRIGHTTIME=700;

#### **DRVLEFTTIME**

Установка длительности превышения центробежного ускорения при повороте налево.

- Доступна через сервер и SMS.
- Версия прошивки: 01.02-а4 и выше.
- Команда запроса: GDRVLEFTTIME.

# Формат команды:

DRVLEFTTIME=duration;

#### Параметры:

| duration | Продолжительность ускорения, при превышении которой начинает фиксироваться нарушение, в миллисекундах (04294967295). |
|----------|----------------------------------------------------------------------------------------------------------------------|
|----------|----------------------------------------------------------------------------------------------------------------------|

#### Пример команды:

DRVLEFTTIME=700;

# Пример ответа:

DRVLEFTTIME=700;

#### **DRVHOLETIME**

Установка длительности превышения ускорения в вертикальном направлении (неровности дороги).

- Доступна через сервер и SMS.
- Версия прошивки: 01.02-а4 и выше.
- Команда запроса: GDRVHOLETIME.

# Формат команды:

DRVHOLETIME=duration;

# Параметры:

| duration | Продолжительность ускорения, при превышении которой начинает фиксироваться нарушение, в миллисекундах (04294967295). |
|----------|----------------------------------------------------------------------------------------------------------------------|
|----------|----------------------------------------------------------------------------------------------------------------------|

# Пример команды:

DRVHOLETIME=100;

# Пример ответа:

DRVHOLETIME=100;

#### **DRVTILTTIME**

Установка длительности превышения порога бокового уклона при определении опрокидывания.

- Доступна через сервер и SMS.
- Версия прошивки: 13.30 и выше.
- Команда запроса: GDRVTILTTIME.

# Формат команды:

DRVTILTTIME=duration;

#### Параметры:

| duration | Продолжительность превышения уклона; при ее превышении начинает фиксироваться нарушение, в миллисекундах (04294967295). |
|----------|-------------------------------------------------------------------------------------------------------------------------|
|----------|-------------------------------------------------------------------------------------------------------------------------|

#### Пример команды:

DRVTILTTIME=100;

# Пример ответа:

DRVTILTTIME=100;

#### **TESTECODRIVE**

Включение режима тестовой поездки.

- Команда позволяет включить режим тестовой поездки, в течение которого контроллер осуществляет измерение параметров качества вождения: поездка должна совершаться в аккуратном режиме. Средние значения показателей за поездку могут быть установлены в контроллере в качестве порогов ускорений командой AUTOECODRIVE. Длительность поездки должна быть не менее 15 минут.
- Доступна через сервер и SMS.
- Версия прошивки: 01.02-а4 и выше.
- Команда запроса: —

#### Формат команды:

TESTECODRIVE=mode;

#### Параметры:

| mode | Режим тестирования. В режиме тестирования все события ускорений начинают фиксироваться от 1,0 м/с <sup>2</sup> :  • 1 — включен; |
|------|----------------------------------------------------------------------------------------------------------------------------------|
|      | • 0 — выключен.                                                                                                                  |

#### Пример команды:

TESTECODRIVE=1;

### Пример ответа:

TESTECODRIVE=1;

#### **AUTOECODRIVE**

Автоматическая установка порогов ускорений по показателям предыдущей поездки.

- Команда позволяет установить пороги после тестовой поездки со включенным режимом TESTECODRIVE и длительностью не менее 15 минут. Считается, что тестовая поездка была аккуратной.
- Доступна через сервер и SMS.
- Версия прошивки: 01.02-а4 и выше.
- Команда запроса: —

#### Формат команды:

AUTOECODRIVE=vehicleType;

#### Параметры:

| vehicleType         Тип транспортного средсти           • 0 — грузовой автомобил           • 1 — пассажирский трани           • 2 — легковой автомобил | ль;<br>спорт; |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
|--------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|

### Пример команды:

AUTOECODRIVE=1;

# Пример ответа:

AUTOECODRIVE=1;

#### **ECODRIVINGRECORD**

Запрос последних зафиксированных событий контроля качества вождения.

- Доступна через сервер и SMS.
- Версия прошивки: 01.02-а4 и выше.
- Команда запроса: —

#### Формат команды:

ECODRIVINGRECORDn;

#### Формат ответа:

ECODRIVINGRECORDn=(N) name, is Ended, duration, accel Max, accel Media: MAX fixed, maxDuration, maxAccel Max, macAccel Media;

#### Параметры:

| n             | Тип события (или оси) экодрайвинга EcoDriveAxis.                                   |
|---------------|------------------------------------------------------------------------------------|
| N             | Общее количество событий (или осей), которые фиксирует контроллер.                 |
| name          | Краткое название события (или оси). Например, ACCELERATION означает резкий разгон. |
| is Ended      | Событие завершено:  • 0 — событие еще длится;  • 1 — событие завершено.            |
| duration      | Длительность зафиксированного события, в миллисекундах.                            |
| accelMax      | Максимальное ускорение последнего события, в м/с <sup>2</sup> .                    |
| accelMedia    | Среднее ускорение последнего события, в м/с <sup>2</sup> .                         |
| fixed         | Зафиксировано ли максимальное ускорение по событию (или оси), в м/с <sup>2</sup> . |
| maxDuration   | Длительность максимального зафиксированного события, в м/с <sup>2</sup> .          |
| maxAccelMax   | Максимальное ускорение максимального события, в м/c <sup>2</sup> .                 |
| maxAccelMedia | Среднее ускорение максимального события, в м/с².                                   |

#### Пример команды:

ECODRIVINGRECORD6;

# Пример ответа:

ECODRIVINGRECORD6=(6)HOLE,0,0,0.000000,0.000000:MAX0,0,0.000000,0.000000;

# **EcoDriveAxis**

Тип события (или оси) контроля качества вождения.

| EDA_ACCELERATION = 0 | 1 — резкое ускорение.        |
|----------------------|------------------------------|
| EDA_BREAKING         | 2 — резкое торможение.       |
| EDA_EXTRBREAKING     | 3 — экстренное торможение.   |
| EDA_RIGHTTURN        | 4 — резкий поворот направо.  |
| EDA_LEFTTURN         | 5 — резкий поворот налево.   |
| EDA_HOLE             | 6 — неровность дороги (яма). |
| EDA_TILT             | 7 — опрокидывание.           |
| EDA_OVERTURN         | 8 — переворот.               |

# **EcoDriveVehicleType**

Тип транспортного средства для контроля качества вождения.

| EDV_TRUCK = 0 | 0 — грузовой автомобиль.    |
|---------------|-----------------------------|
| EDV_BUS       | 1 — пассажирский транспорт. |
| EDV_CAR       | 2 — легковой автомобиль.    |

# События

События позволяют запрограммировать действия контроллера по выполнению заданного условия.

- Источник данных для события задается командой EVENTSOURCEn.
- Условие срабатывания события определяется типом события (<u>EVENTTYPEn</u>) и состоянием анализируемого параметра (<u>EVENTCONDITION</u>n).
- Действия, которые контроллер выполняет при срабатывании условия, задаются командой EVENTACTIONn.

| Список команд   | Описание                                                                                                                                                                           |
|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EVENTSOURCEn    | Указание источника события.                                                                                                                                                        |
| EVENTTYPEn      | Выбор типа (или параметра) события.                                                                                                                                                |
| EVENTCONDITIONn | Выбор состояния типа или параметра, при котором происходит срабатывание события.                                                                                                   |
| EVENTDELAYn     | Установка задержки срабатывания события («антидребезг»).                                                                                                                           |
| TIMERDURATIONn  | Установка продолжительности включения события по таймеру.                                                                                                                          |
| EVENTACTIONn    | Выбор действия при возникновении события.                                                                                                                                          |
| PULSEDURATIONn  | Установка длительности импульса на выходе контроллера при возникновении события.                                                                                                   |
| EVENTTELNUMn    | Назначение телефонного номера, на который будут отправлены SMS-сообщение и/или телефонный вызов при срабатывании события.                                                          |
| EVENTALIASn     | Установка краткого наименования события, которое будет указано в SMS-сообщении при срабатывании.                                                                                   |
| EVENTCOMMANDn   | Установка текстовой команды, которая будет выполнена при<br>срабатывании события.                                                                                                  |
| EVENTTRIGGERn   | Инициирование события.                                                                                                                                                             |
| EVENTDETRIGGERn | Отключение действия события.                                                                                                                                                       |
| EVENTSTATEN     | Запрос состояния события.                                                                                                                                                          |
| EVENTFLAGn      | Назначение номера флага или входа, который переключается при выборе действий «включить флаг или виртуальный вход контроллера» и «выключить флаг или виртуальный вход контроллера». |

| Список групп параметров | Описание                                                                                                              |
|-------------------------|-----------------------------------------------------------------------------------------------------------------------|
| DeviceFlags             | Флаги (биты состояний) контроллера.                                                                                   |
| DeviceInputsFlags       | Входы контроллера.                                                                                                    |
| EventActions            | Флаги действий событий (НЕХ). Может быть задано одновременно несколько флагов (в виде суммы шестнадцатеричных чисел). |
| EventSource             | Источник события.                                                                                                     |
| EventTimerType          | Событие по таймеру.                                                                                                   |

| Список групп параметров | Описание             |
|-------------------------|----------------------|
| EventInstant            | Мгновенные события.  |
| LogicOperation          | Логическая операция. |

#### **EVENTSOURCEn**

Указание источника события.

- Доступна через сервер и SMS.
- Версия прошивки: 01.02-а4 и выше.
- Команда запроса: GEVENTSOURCEn.

# Формат команды:

EVENTSOURCEn=source;

# Параметры:

| n      | Номер события (0116).               |
|--------|-------------------------------------|
| source | Источник события (см. EventSource). |

#### Пример команды:

EVENTSOURCE01=1;

# Пример ответа:

EVENTSOURCE01=1;

**Примечание.** Значение ET\_PERIODIC не может использоваться в данной команде.

#### **EVENTTYPEn**

Выбор типа (или параметра) события.

- Доступна через сервер и SMS.
- Версия прошивки: 01.02-а4 и выше.
- Команда запроса: GEVENTTYPEn.

# Формат команды:

EVENTTYPEn=type;

#### Параметры:

| n    | Номер события (0116).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| type | <ul> <li>Тип (или параметр) события. Зависит от EVENTSOURCE:</li> <li>если EVENTSOURCE события равен 1, то в типе задается номер флага контроллера (см. DeviceFlags);</li> <li>если EVENTSOURCE события равен 2, то в типе задается номер адаптива — значение x команды ADAPTIVE;</li> <li>если EVENTSOURCE события равен 3, то в типе задается номер дискретного параметра (см. DiscrParamId);</li> <li>если EVENTSOURCE события равен 5, то в типе задается логическая операция (см. LogicOperation);</li> <li>если EVENTSOURCE события равен 6, то в типе задается номер входа контроллера (см. DeviceInputsFlags);</li> <li>если EVENTSOURCE события равен 9, то в типе задается тип таймера (см. EventTimerType);</li> <li>при прочих EVENTSOURCE тип не учитывается.</li> </ul> |

# Пример команды:

EVENTTYPE01=1;

# Пример ответа:

EVENTTYPE01=1;

#### **EVENTCONDITIONn**

Выбор состояния типа или параметра, при котором происходит срабатывание события.

- Доступна через сервер и SMS.
- Версия прошивки: 01.02-а4 и выше.
- Команда запроса: GEVENTCONDITIONn.

# Формат команды:

EVENTCONDITIONn=con;

# Параметры:

| n   | Номер события (0116).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| con | Состояние типа или параметра, при котором происходит срабатывание события. Зависит от EVENTSOURCE:  • если EVENTSOURCE события равен 1, то в параметре задается состояние флага контроллера (0 или 1);  • если EVENTSOURCE события равен 2, то в параметре задается тип срабатывания адаптива (AdaptiveLevelEvent_doc или AdaptiveDiscreteEvent_doc);  • если EVENTSOURCE события равен 3, то в параметре задается состояние дискретного параметра (зависит от DiscrParamld, 04294967295, может быть не только 0 или 1);  • если EVENTSOURCE события равен 5, то в параметре задается битовое поле, каждый бит которого отвечает за соответствующий номер события:  • 0 бит — событие 1;  • 1 бит — событие 2 и т. д.;  • если EVENTSOURCE события равен 6, то в параметре задается состояние входа контроллера (0 или 1);  • если EVENTSOURCE события равен 7, то в параметре задается состояние кнопки контроллера (0 или 1); |

#### Пример команды:

EVENTCONDITION01=1;

# Пример ответа:

EVENTCONDITION01=1;

**Примечание.** Время начала события при EVENTSOURCE равном 9 зависит от типа таймера EVENTTYPEn (см. EventTimerType). Время задается в UTC (GMT+0)!

При EVENTTYPEn равном 1 (суточный таймер):

# Формат команды:

EVENTCONDITIONn=HHHHmm;

# Параметры:

| n    | Номер события (0116).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| НННН | Номер события (0116).  Часы, в которые разрешено срабатывание таймера. Представляет собой сумму следующих значений, в десятичном виде:  1 — таймер срабатывает в 00 часов;  2 — таймер срабатывает в 01 час;  4 — таймер срабатывает в 02 часа;  8 — таймер срабатывает в 03 часа;  16 — таймер срабатывает в 04 часа;  32 — таймер срабатывает в 05 часов;  64 — таймер срабатывает в 06 часов;  128 — таймер срабатывает в 07 часов;  256 — таймер срабатывает в 08 часов;  512 — таймер срабатывает в 09 часов;  1024 — таймер срабатывает в 10 часов;  2048 — таймер срабатывает в 11 часов;  4096 — таймер срабатывает в 12 часов;  8192 — таймер срабатывает в 13 часов;  16384 — таймер срабатывает в 14 часов;  32768 — таймер срабатывает в 17 часов;  262144 — таймер срабатывает в 18 часов;  524288 — таймер срабатывает в 18 часов;  524288 — таймер срабатывает в 19 часов;  1048576 — таймер срабатывает в 20 часов;  2097152 — таймер срабатывает в 21 час;  4194304 — таймер срабатывает в 22 часа;  8388608 — таймер срабатывает в 23 часа. |
| mm   | При <b>НННН</b> = 0 таймер будет срабатывать каждый час. Минута, в которую запустится таймер (обязательно две цифры).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

Пример команды: таймер срабатывает каждый час в 5 минут:

EVENTCONDITION01=05;

Пример команды: таймер срабатывает каждый день в 00:06 и в 09:06:

EVENTCONDITION01=51306;

НПО «ТехноКом» © 2025

При EVENTTYPEn равном 2 (недельный таймер):

# Формат команды:

EVENTCONDITIONn=DDDDHHmm;

#### Параметры:

| n    | Номер события (0116).                                                                                                                                                                                                                                                                                                                                                                                                                           |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DDDD | Дни недели, в которые разрешено срабатывание таймера. Представляет собой сумму следующих значений, в десятичном виде:  1 — таймер срабатывает в воскресенье;  2 — таймер срабатывает в понедельник;  4 — таймер срабатывает во вторник;  8 — таймер срабатывает в среду;  16 — таймер срабатывает в четверг;  32 — таймер срабатывает в пятницу;  64 — таймер срабатывает в субботу.  При <b>DDDD</b> = 0 таймер будет срабатывать каждый день. |
| нн   | Час, в который запустится таймер (обязательно две цифры).                                                                                                                                                                                                                                                                                                                                                                                       |
| mm   | Минута, в которую запустится таймер (обязательно две цифры).                                                                                                                                                                                                                                                                                                                                                                                    |

Пример команды: таймер срабатывает каждый день в 11:05:

EVENTCONDITION01=1105;

Пример команды: таймер срабатывает в воскресенье, понедельник и вторник в 01:06:

EVENTCONDITION01=70106;

При EVENTTYPEn равном 3 (годовой таймер):

# Формат команды:

EVENTCONDITIONn=MMMMDDHHmm;

# Параметры:

| n   | Номер события (0116).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ммм | Месяцы, в которые разрешено срабатывание таймера. Представляет собой сумму следующих значений, в десятичном виде:  1 — таймер срабатывает в январе;  2 — таймер срабатывает в феврале;  4 — таймер срабатывает в марте;  8 — таймер срабатывает в апреле;  16 — таймер срабатывает в мае;  32 — таймер срабатывает в июне;  64 — таймер срабатывает в июле;  128 — таймер срабатывает в августе;  256 — таймер срабатывает в сентябре;  512 — таймер срабатывает в октябре;  1024 — таймер срабатывает в ноябре;  2048 — таймер срабатывает в декабре. |
| DD  | День месяца, в который запустится таймер (обязательно две цифры).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| нн  | Час, в который запустится таймер (обязательно две цифры).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| mm  | Минута, в которую запустится таймер (обязательно две цифры).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

Пример команды: таймер срабатывает каждый месяц в первое число в 10:05:

EVENTCONDITION01=011005;

Пример команды: таймер срабатывает 10го числа в марте и апреле в 05:26:

EVENTCONDITION01=12100526;

#### **EVENTDELAYn**

Установка задержки срабатывания события («антидребезг»).

- Доступна через сервер и SMS.
- Версия прошивки: 01.02-а4 и выше.
- Команда запроса: GEVENTDELAYn.

# Формат команды:

EVENTDELAYn=time;

# Параметры:

| n    | Номер события (0116).                                    |
|------|----------------------------------------------------------|
| time | Задержка срабатывания события, в секундах (04294967294). |

#### Пример команды:

EVENTDELAY01=3;

#### Пример ответа:

EVENTDELAY01=3;

**Примечание.** Следует учитывать, что установка для параметра **time** значения, превышающего сутки, может привести к тому, что событие никогда не сработает из-за ежедневного автоматического перезапуска контроллера.

#### **TIMERDURATION**n

Установка продолжительности включения события по таймеру.

- Доступна через сервер и SMS.
- Версия прошивки: 13.36 и выше.
- Команда запроса: GTIMERDURATIONn.

#### Формат команды:

TIMERDURATIONn=time;

#### Параметры:

| n    | Номер события (0116).                                                     |
|------|---------------------------------------------------------------------------|
| time | Продолжительность включения таймера по событию, в секундах (14294967294). |

#### Пример команды:

TIMERDURATION01=60;

#### Пример ответа:

TIMERDURATION01=60;

**Примечание.** Следует учитывать, что при установке для параметра **time** значения, превышающего сутки, событие может длиться меньше заданного времени из-за ежедневного автоматического перезапуска контроллера.

#### **EVENTACTIONn**

Выбор действия при возникновении события.

- Доступна через сервер и SMS.
- Версия прошивки: 01.02-а4 и выше.
- Команда запроса: GEVENTACTIONn.

# Формат команды:

EVENTACTIONn=action;

# Параметры:

| n      | Номер события (0116).                                                                                                                                                                                                                                                                                  |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| action | Действия, которые должен выполнить контроллер при возникновении события. Битовое поле, передается в формате HEX, без 0х. Для включения нескольких действий необходимо выполнить сложение соответствующих значений в HEX и отправить на контроллер эту сумму (см. EventActions или EventActionsMobile). |

#### Пример команды:

EVENTACTION01=2;

# Пример ответа:

EVENTACTION01=2;

#### **PULSEDURATION**n

Установка длительности импульса на выходе контроллера при возникновении события.

- Доступна через сервер и SMS.
- Версия прошивки: 01.02-а4 и выше.
- Команда запроса: GPULSEDURATIONn.

# Формат команды:

PULSEDURATIONn=dur;

#### Параметры:

| n   | Номер события (0116).                                                                  |
|-----|----------------------------------------------------------------------------------------|
| dur | Длительность импульса на выходе при возникновении события, в миллисекундах (03600000). |

# Пример команды:

PULSEDURATION01=10;

# Пример ответа:

PULSEDURATION01=10;

#### **EVENTTELNUMn**

Назначение телефонного номера, на который будут отправлены SMS-сообщение и/или телефонный вызов при срабатывании события.

- Доступна через сервер и SMS.
- Версия прошивки: 01.02-а4 и выше.
- Команда запроса: GEVENTTELNUMn.

# Формат команды:

EVENTTELNUMn=num;

#### Параметры:

| n   | Номер события (0116).                                                                                                        |
|-----|------------------------------------------------------------------------------------------------------------------------------|
| num | Телефонный номер, на который будут отправлены SMS-сообщение и/или телефонный вызов при срабатывании события, до 16 символов. |

#### Пример команды:

EVENTTELNUM01=+79512346789;

# Пример ответа:

EVENTTELNUM01=+79512346789;

#### **EVENTALIAS**n

Установка краткого наименования события, которое будет указано в SMS-сообщении при срабатывании.

- Доступна через сервер и SMS.
- Версия прошивки: 01.02-а4 и выше.
- Команда запроса: GEVENTALIASn.

# Формат команды:

EVENTALIASn=alias;

#### Параметры:

| n     | Номер события (0116).                                                                                                                      |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------|
| alias | Краткое наименование события, которое будет указано в SMS-сообщении при срабатывании, до 8 символов: букв латинского алфавита и цифр (09). |

# Пример команды:

EVENTALIAS01=Зажигание;

# Пример ответа:

EVENTALIAS01=Зажигание;

#### **EVENTCOMMANDn**

Установка текстовой команды, которая будет выполнена при срабатывании события.

- Доступна через сервер и SMS.
- Версия прошивки: 01.02-а4 и выше.
- Команда запроса: GEVENTCOMMANDn.

# Формат команды:

EVENTCOMMANDn=command;

#### Параметры:

| n       | Номер события (0116).              |  |
|---------|------------------------------------|--|
| command | Текстовая команда, до 64 символов. |  |

#### Пример команды:

EVENTCOMMAND01=EVENTTRIGGER02;

# Пример ответа:

EVENTCOMMAND01=EVENTTRIGGER02;

#### **EVENTTRIGGERn**

Инициирование события.

- Команда принудительно инициирует событие независимо от источника и других настроек срабатывания.
- Доступна через сервер и SMS.
- Версия прошивки: 01.02-а4 и выше.

# Формат команды:

**EVENTTRIGGERn**;

# Параметры:

| n | Номер события (0116). |
|---|-----------------------|
|   | •                     |

# Пример команды:

**EVENTTRIGGER01**;

# Пример ответа:

**EVENTTRIGGER01**;

#### **EVENTDETRIGGERn**

Отключение действия события.

- Команда принудительно отключает событие независимо от источника и других настроек срабатывания.
- Доступна через сервер и SMS.
- Версия прошивки: 01.10-а2 и выше.

# Формат команды:

**EVENTDETRIGGERn**;

#### Параметры:

| n | Номер события (0116). |
|---|-----------------------|
|   |                       |

# Пример команды:

**EVENTDETRIGGER01**;

# Пример ответа:

**EVENTDETRIGGER01**;

#### **EVENTSTATE**n

Запрос состояния события.

- Команда запрашивает текущее состояние события.
- Доступна через сервер и SMS.
- Версия прошивки: 01.02-а4 и выше.
- Команда запроса: GEVENTSTATEn.

#### Формат ответа:

EVENTSTATE n = eventState, eventTrigger, eventDeTrigger, sourceState, eventTime;

# Параметры:

| n              | Номер события (0116).                                                               |  |
|----------------|-------------------------------------------------------------------------------------|--|
| eventState     | <ul><li>Состояние события:</li><li>1 — сработка;</li><li>0 — не сработка.</li></ul> |  |
| eventTrigger   | Ожидается действие по сработке:  • 1 — ожидается;  • 0 — не ожидается.              |  |
| eventDeTrigger | Ожидается действие по окончанию события:  • 1 — ожидается;  • 0 — не ожидается.     |  |
| sourceState    | Текущее состояние источника события (зависит от EVENTSOURCE и EVENTTYPE).           |  |
| eventTime      | Время нахождения в состоянии срабатывания.                                          |  |

# Пример команды:

GEVENTSTATE01;

# Пример ответа:

EVENTSTATE01=1,1,0,5,0;

#### **EVENTFLAGn**

Назначение номера флага или входа, который переключается при выборе действий «включить флаг или виртуальный вход контроллера» и «выключить флаг или виртуальный вход контроллера».

- Доступна через сервер и SMS.
- Версия прошивки: 01.02-а4 и выше.
- Команда запроса: GEVENTFLAGn.

# Формат команды:

EVENTFLAGn=flag;

### Параметры:

| n    | Номер события (0116).                                                                                                                |
|------|--------------------------------------------------------------------------------------------------------------------------------------|
| flag | Номер флага или входа контроллера, который будет включен или выключен при наступлении события (см. DeviceFlags и DeviceInputsFlags). |

#### Пример команды:

EVENTFLAG01=3;

# Пример ответа:

EVENTFLAG01=3;

# DeviceFlags

Флаги (биты состояний) контроллера.

| DF_MASK_READ1 = 0x00000100      | 9 — данные отправлены на первый сервер (только в записях).  |
|---------------------------------|-------------------------------------------------------------|
| DF_MASK_READ2 = 0x00000200      | 10 — данные отправлены на второй сервер (только в записях). |
| DF_MASK_BORT = 0x00000400       | 11 — наличие основного питания.                             |
| DF_MASK_RESERV = 0x00000800     | 12 — наличие питания от внешнего аккумулятора.              |
| DF_MASK_INANTOK = 0x00001000    | 13 — состояние антенны навигационного приемника.            |
| DF_MASK_OUTANTOK = 0x00002000   | 14 — зарезервировано.                                       |
| DF_MASK_USBCONNECT = 0x00004000 | 15 — подключено USB.                                        |
| DF_MASK_ALARM = 0x00008000      | 16 — нажата тревожная кнопка.                               |
| DF_MASK_RPMCAN = 0x00010000     | 17 — есть обороты по CAN.                                   |
| DF_MASK_ROAMING = 0x00020000    | 18 — контроллер находится в роуминге.                       |
| DF_MASK_LOADING = 0x00040000    | 19 — идет погрузка в транспортное средство.                 |
| DF_MASK_GSM = 0x00080000        | 20 — наличие GSM сигнала.                                   |
| DF_MASK_ISSTAND = 0x00100000    | 21 — остановка.                                             |
| DF_MASK_AKK_IN = 0x00400000     | 23 — наличие питания от внутреннего аккумулятора.           |
| DF_MASK_READ3 = 0x00800000      | 24 — данные отправлены на третий сервер (только в записях). |

# DeviceInputsFlags

Входы контроллера.

| DF_MASK_INPUT1 = 0x00000001    | 1 — состояние входа 1.                                  |
|--------------------------------|---------------------------------------------------------|
| DF_MASK_INPUT2 = 0x00000002    | 2 — состояние входа 2.                                  |
| DF_MASK_INPUT3 = 0x00000004    | 3 — состояние входа 3.                                  |
| DF_MASK_INPUT4 = 0x00000008    | 4 — состояние входа 4.                                  |
| DF_MASK_INPUT5 = 0x00000010    | 5 — состояние входа 5.                                  |
| DF_MASK_INPUT6 = 0x00000020    | 6 — состояние входа 6.                                  |
| DF_MASK_INPUT7 = 0x00000040    | 7 — состояние входа 7.                                  |
| DF_MASK_INPUT8 = 0x00000080    | 8 — состояние входа 8.                                  |
| DF_MASK_IN9 = 0x00200000       | 22 — состояние входа 9 (высокоомного).                  |
| DF_MASK_HF_BUTTON = 0x01000000 | 25 — состояние кнопки гарнитуры (не попадает в записи). |

# **EventActions**

Флаги действий событий (HEX). Может быть задано одновременно несколько флагов (в виде суммы шестнадцатеричных чисел).

| EA_NOTHING = 0                      | 0 — нет действий.                                                                                      |
|-------------------------------------|--------------------------------------------------------------------------------------------------------|
| EA_CURRENT_COORDINATES = 0x00000001 | 1 — записать текущие координаты.                                                                       |
| EA_PAST_COORDINATES = 0x00000002    | 2 — записать координаты предыдущих секунд.                                                             |
| EA_OUTPUT1_ON = 0x00000004          | 4 — включить выход 1 (для контроллеров с выходом 1).                                                   |
| EA_OUTPUT1_OFF = 0x00000008         | 8 — выключить выход 1 (для контроллеров с выходом 1).                                                  |
| EA_OUTPUT1_PULSE = 0x00000010       | 10 — выдать импульс на выход 1 (для контроллеров с выходом 1).                                         |
| EA_OUTPUT2_ON = 0x00000020          | 20 — включить выход 2 (для контроллеров с выходом 2).                                                  |
| EA_OUTPUT2_OFF = 0x00000040         | 40 — выключить выход 2 (для контроллеров с выходом 2).                                                 |
| EA_OUTPUT2_PULSE = 0x00000080       | 80 — выдать импульс на выход 2 (для контроллеров с выходом 2).                                         |
| EA_MAKE_CALL1 = 0x00000100          | 100— совершить вызов на указанный номер телефона с модема 1 (для контроллеров с голосовой связью).     |
| EA_SEND_SMS1 = 0x00000200           | 200 — отправить SMS-сообщение на указанный номер телефона с модема 1.                                  |
| EA_TRANSMISSION = 0x00000400        | 400 — начать внеочередную отправку данных.                                                             |
| EA_COMMAND = 0x00000800             | 800 — выполнить команду (EVENTCOMMANDn).                                                               |
| EA_OUTPUT1_HOLD = 0x00001000        | 1000 — включить выход 1, пока длится событие (для контроллеров с выходом 1).                           |
| EA_OUTPUT2_HOLD = 0x00002000        | 2000 — включить выход 2, пока длится событие (для контроллеров с выходом 2).                           |
| EA_FLAG_ON = 0x00004000             | 4000 — включить заданный флаг или виртуальный вход контроллера.                                        |
| EA_FLAG_OFF = 0x00008000            | 8000 — выключить заданный флаг или виртуальный вход контроллера.                                       |
| EA_FLAG_HOLD = 0x00010000           | 10000 — включить флаг или виртуальный вход контроллера, пока длится событие.                           |
| EA_STOP_CALL1 = 0x00020000          | 20000 — завершить голосовой вызов с модема 1 (для контроллеров с голосовой связью).                    |
| EA_OUTPUT3_ON = 0x00040000          | 40000 — включить выход 3 (для контроллеров с выходом 3).                                               |
| EA_OUTPUT3_OFF = 0x00080000         | 80000 — выключить выход 3 (для контроллеров с выходом 3).                                              |
| EA_OUTPUT3_PULSE = 0x00100000       | 100000 — выдать импульс на выход 3 (для контроллеров с выходом 3).                                     |
| EA_OUTPUT3_HOLD = 0x00200000        | 200000 — включить выход 3, пока длится событие (для контроллеров с выходом 3).                         |
| EA_SEND_SMS2 = 0x00400000           | 400000 — отправить SMS-сообщение на указанный номер телефона с модема 2 (для устройств АвтоГРАФ-АСН).  |
| EA_MAKE_CALL2 = 0x00800000          | 800000 — совершить вызов на указанный номер телефона с модема 2 (для контроллеров с голосовой связью). |
| EA_STOP_CALL2 = 0x01000000          | 1000000 — завершить голосовой вызов с модема 2 (для контроллеров с голосовой связью).                  |
| EA_COMMAND_NO_SAVE = 0x02000000     | 2000000 — выполнить команду (EVENTCOMMANDn) без сохранения настроек в энергонезависимую память.        |

# **EventSource**

Источник события.

| ET_NOT_SET = 0 | 0 — нет источника.                                                                    |
|----------------|---------------------------------------------------------------------------------------|
| ET_FLAGS       | 1 — переключение флага контроллера (см. DeviceFlags).                                 |
| ET_ADAPTIVE    | 2 — срабатывание адаптива.                                                            |
| ET_DISCRETE    | 3 — переключение дискретного параметра (см. DiscrParamId).                            |
| ET_COMMAND     | 4 — срабатывание по команде.                                                          |
| ET_LOGIC       | 5 — логическая операция («И» или «ИЛИ»).                                              |
| ET_INPUTS      | 6 — переключение входа контроллера (см. DeviceInputsFlags).                           |
| ET_BUTTONS     | 7 — нажатие кнопки контроллера (см. DeviceButtonFlags).                               |
| ET_INSTANT     | 8 — мгновенное событие (см. <u>EventInstant</u> ).                                    |
| ET_TIMER       | 9 — сработка по таймеру (см. EventTimerType).                                         |
| ET_PERIODIC    | 10 — периодическое событие (может использоваться только в команде ECONOMYWAKESOURCE). |

# **EventTimerType**

Событие по таймеру.

| EET_DISABLED = 0 | 0 — отключено.        |
|------------------|-----------------------|
| ETT_DAILY        | 1 — суточный таймер.  |
| ETT_WEEKLY       | 2 — недельный таймер. |
| ETT_YEARLY       | 3 — годовой таймер.   |

# **EventInstant**

Мгновенные события.

| EI_DISABLED = 0 | 0 — отключено. |
|-----------------|----------------|
| EI_FALL         | 1 — падение.   |
| EI_STRIKE       | 2 — удар.      |

# LogicOperation

Логическая операция.

| LO_NOT_SET = 0 | 0 — не настроено.                                                                                                                            |
|----------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| LO_OR          | 1 — объединение по «ИЛИ». Логическое событие сработает, если сработало любое из выбранных событий.                                           |
| LO_AND         | 2 — объединение по «И». Логическое событие сработает, если сработали сразу все выбранные события.                                            |
| LO_EQUAL       | 3 — проверка равенства. Логическое событие сработает, если состояние всех вышестоящих событий соответствует состоянию битов EVENTCONDITIONn. |

# Движение и остановка

Настройка определения контроллером движения и остановки.

| Список команд             | Описание                                                                                         |
|---------------------------|--------------------------------------------------------------------------------------------------|
| MOTIONSOURCES             | Выбор источников информации для определения движения и остановки.                                |
| GMOTIONSTATE              | Запрос текущего статуса движения.                                                                |
| MOTIONFLAGSOURCE          | Назначение флага контроллера, по которому определяется наличие движения.                         |
| MOTIONFLAGSTATE           | Установка состояния флага контроллера, по которому определяется наличие движения.                |
| MOTIONINPUTSOURCE         | Выбор входа контроллера, по которому определяется наличие движения.                              |
| MOTIONINPUTSTATE          | Установка состояния входа контроллера, по которому определяется наличие движения.                |
| MOTIONDISCRETESOURCE      | Установка дискретного параметра контроллера, по которому определяется наличие движения.          |
| MOTIONDISCRETESTATE       | Установка состояния дискретного параметра, по которому контроллер определяет наличие движения.   |
| STOPRECORDSMULTIPLIER     | Установка множителя периода фиксации дополнительных записей (все, кроме координат) на остановке. |
| STOPCOORDINATESMULTIPLIER | Установка множителя периода записи координат на остановке.                                       |
| STOPTRANSMITMULTIPLIER    | Установка множителя периода передачи данных на остановке.                                        |

| Список групп параметров | Описание                                                                                              |
|-------------------------|-------------------------------------------------------------------------------------------------------|
| MotionSources           | Флаги источников признака движения (HEX). Может быть задано одновременно несколько флагов (до 5 бит). |

## **MOTIONSOURCES**

Выбор источников информации для определения движения и остановки.

- Доступна через сервер и SMS.
- Версия прошивки: 01.04-а11 и выше.
- Команда запроса: GMOTIONSOURCES.

#### Формат команды:

MOTIONSOURCES=sources;

#### Параметры:

| sources | Источники движения и остановки, в шестнадцатеричном формате (HEX) (см. MotionSources). |
|---------|----------------------------------------------------------------------------------------|
|---------|----------------------------------------------------------------------------------------|

## Пример команды:

MOTIONSOURCES=5;

## Пример ответа:

MOTIONSOURCES=5;

**Примечание.** Состояние контроллера будет считаться остановкой, если хотя бы один из заданных источников соответствует остановке. Состояние контроллера будет считаться движением, если все заданные источники соответствуют движению.

## **GMOTIONSTATE**

Запрос текущего статуса движения.

- Доступна через сервер и SMS.
- Версия прошивки: 13.34 и выше.
- Команда запроса: GMOTIONSTATE.

# Формат ответа:

MOTIONSTATE=state,sources;

## Параметры:

| state                                                                                             | <ul><li>Текущее состояние:</li><li>1 — движение;</li><li>0 — остановка.</li></ul> |
|---------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| sources Источники, определившие остановку, в шестнадцатеричном формате (HEX) (см. MotionSources). |                                                                                   |

## Пример команды:

GMOTIONSTATE;

# Пример ответа:

MOTIONSTATE=1,2F;

## **MOTIONFLAGSOURCE**

Назначение флага контроллера, по которому определяется наличие движения.

- Доступна через сервер и SMS.
- Версия прошивки: 01.04-а11 и выше.
- Команда запроса: GMOTIONFLAGSOURCE.

## Формат команды:

MOTIONFLAGSOURCE=flag;

## Параметры:

| flag | Номер флага (бита состояния) контроллера, по которому определяется движение (см. DeviceFlags). |
|------|------------------------------------------------------------------------------------------------|
|------|------------------------------------------------------------------------------------------------|

## Пример команды:

MOTIONFLAGSOURCE=11;

## Пример ответа:

MOTIONFLAGSOURCE=11;

## **MOTIONFLAGSTATE**

Установка состояния флага контроллера, по которому определяется наличие движения.

- Доступна через сервер и SMS.
- Версия прошивки: 01.04-а11 и выше.
- Команда запроса: GMOTIONFLAGSTATE.

## Формат команды:

MOTIONFLAGSTATE=state;

## Параметры:

| state | Состояние флага (бита состояния) контроллера, по которому определяется движение (0 или 1). |
|-------|--------------------------------------------------------------------------------------------|
| state | (-)                                                                                        |

## Пример команды:

MOTIONFLAGSTATE=1;

## Пример ответа:

MOTIONFLAGSTATE=1;

## **MOTIONINPUTSOURCE**

Выбор входа контроллера, по которому определяется наличие движения.

- Доступна через сервер и SMS.
- Версия прошивки: 01.04-а11 и выше.
- Команда запроса: GMOTIONINPUTSOURCE.

## Формат команды:

MOTIONINPUTSOURCE=input;

## Параметры:

| input | Номер входа контроллера, по которому определяется движение (см. DeviceInputsFlags). |
|-------|-------------------------------------------------------------------------------------|
|-------|-------------------------------------------------------------------------------------|

## Пример команды:

MOTIONINPUTSOURCE=2;

## Пример ответа:

MOTIONINPUTSOURCE=2;

## **MOTIONINPUTSTATE**

Установка состояния входа контроллера, по которому определяется наличие движения.

- Доступна через сервер и SMS.
- Версия прошивки: 01.04-а11 и выше.
- Команда запроса: GMOTIONINPUTSTATE.

## Формат команды:

MOTIONINPUTSTATE=state;

## Параметры:

|       | Состояние входа контроллера, по которому определяется движение: |
|-------|-----------------------------------------------------------------|
| state | • 0 — подключен на массу;                                       |
|       | • 1 — подключен к питанию.                                      |

## Пример команды:

MOTIONINPUTSTATE=1;

## Пример ответа:

MOTIONINPUTSTATE=1;

## **MOTIONDISCRETESOURCE**

Установка дискретного параметра контроллера, по которому определяется наличие движения.

- Доступна через сервер и SMS.
- Версия прошивки: 01.04-а11 и выше.
- Команда запроса: GMOTIONDISCRETESOURCE.

## Формат команды:

MOTIONDISCRETESOURCE=discr;

## Параметры:

| discr | Дискретный параметр, по которому контроллер определяет движение (см. DiscrParamId). |
|-------|-------------------------------------------------------------------------------------|
|-------|-------------------------------------------------------------------------------------|

## Пример команды:

MOTIONDISCRETESOURCE=125;

## Пример ответа:

MOTIONDISCRETESOURCE=125;

#### **MOTIONDISCRETESTATE**

Установка состояния дискретного параметра, по которому контроллер определяет наличие движения.

- Доступна через сервер и SMS.
- Версия прошивки: 01.04-а11 и выше.
- Команда запроса: GMOTIONDISCRETESTATE.

## Формат команды:

MOTIONDISCRETESTATE=state;

## Параметры:

| state | Состояние дискретного параметра, по которому контроллер определяет движение (зависит от DiscrParamld, 0254, может быть не только 0 или 1). |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------|
|-------|--------------------------------------------------------------------------------------------------------------------------------------------|

## Пример команды:

MOTIONDISCRETESTATE=1;

## Пример ответа:

MOTIONDISCRETESTATE=1;

#### **STOPRECORDSMULTIPLIER**

Установка множителя периода фиксации дополнительных записей (все, кроме координат) на остановке.

- Доступна через сервер и SMS.
- Версия прошивки: 01.04-а11 и выше.
- Команда запроса: GSTOPRECORDSMULTIPLIER.

## Формат команды:

STOPRECORDSMULTIPLIER=mult;

## Параметры:

|      | mult   | Множитель периода фиксации дополнительных записей на остановке,            |
|------|--------|----------------------------------------------------------------------------|
| mult | illuit | 04294967294. 0 — отключить запись дополнительных параметров на остановках. |

**Примечание.** Установка для множителя значения 0 отключит запись параметра по времени, но не отключит адаптивную запись и запись при группировке данных.

#### Пример команды:

STOPRECORDSMULTIPLIER=10;

## Пример ответа:

STOPRECORDSMULTIPLIER=10;

**Примечание.** Следует учитывать, что установка для параметра **mult** значения, при котором период записей превысит сутки, может не иметь смысла из-за ежедневного автоматического перезапуска контроллера.

## **STOPCOORDINATESMULTIPLIER**

Установка множителя периода записи координат на остановке.

- Доступна через сервер и SMS.
- Версия прошивки: 01.04-а11 и выше.
- Команда запроса: GSTOPCOORDINATESMULTIPLIER.

#### Формат команды:

STOPCOORDINATESMULTIPLIER=mult;

#### Параметры:

| mult | Множитель периода записи координат на остановке, 14294967294. |
|------|---------------------------------------------------------------|
|------|---------------------------------------------------------------|

#### Пример команды:

STOPCOORDINATESMULTIPLIER=10;

## Пример ответа:

STOPCOORDINATESMULTIPLIER=10;

**Примечание.** Данная настройка работает только в режиме записи координат по времени. Установка для параметра **mult** значения 0 недопустима.

**Примечание.** Следует учитывать, что установка параметра **mult** значения, при котором период записей превысит сутки, может не иметь смысла из-за ежедневного автоматического перезапуска контроллера.

## **STOPTRANSMITMULTIPLIER**

Установка множителя периода передачи данных на остановке.

- Доступна через сервер и SMS.
- Версия прошивки: 01.04-а11 и выше.
- Команда запроса: GSTOPTRANSMITMULTIPLIER.

#### Формат команды:

STOPTRANSMITMULTIPLIER=mult;

#### Параметры:

| mult | Множитель периода передачи данных на остановке, 04294967294. |
|------|--------------------------------------------------------------|
|------|--------------------------------------------------------------|

## Пример команды:

STOPTRANSMITMULTIPLIER=10;

## Пример ответа:

STOPTRANSMITMULTIPLIER=10;

**Примечание.** Установка для параметра **mult** значения 0 отключит передачу данных по времени.

**Примечание.** Следует учитывать, что установка параметра **mult** значения, при котором период передачи превысит сутки, может не иметь смысла из-за ежедневного автоматического перезапуска контроллера.

## **MotionSources**

Флаги источников признака движения (НЕХ). Может быть задано одновременно несколько флагов (до 5 бит).

| MS_NOTHING = 0              | 0 — нет источников движения.                                |
|-----------------------------|-------------------------------------------------------------|
| MS_NAVIGATION_SPEED = 0x01u | 1 — движение по скорости с навигационного приемника.        |
| MS_ACCELEROMETER = 0x02u    | 2 — движение по акселерометру.                              |
| MS_RPM = 0x04u              | 4 — движение по оборотам двигателя.                         |
| MS_FLAGS = 0x08u            | 8 — движение по флагам устройства (см. DeviceFlags).        |
| MS_DISCRETE = 0x10u         | 10 — движение по дискретным параметрам (см. DiscrParamld).  |
| MS_INPUTS = 0x20u           | 20 — движение по входам устройства (см. DeviceInputsFlags). |
| MS_CAN_SPEED = 0x40u        | 40 — движение по скорости с CAN.                            |

# Скрипты

| Список команд  | Описание                    |
|----------------|-----------------------------|
| SCRIPTCOMMANDn | Запуск скрипта.             |
| SCRIPTSCRIPTn  | Выбор исполняемого скрипта. |

## **SCRIPTCOMMANDn**

Запуск скрипта.

- Доступна через сервер и SMS.
- Версия прошивки: 13.24 и выше.
- Команда запроса: GSCRIPTCOMMAND.

# Формат команды:

SCRIPTCOMMANDn=command;

## Параметры:

| n       | Порядковый номер скрипта (0110).                                                                                                                                                               |
|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| command | Команда («ярлык»), при передаче которой на контроллер будет исполняться соответствующий скрипт, до 16 символов. Может содержать буквы латинского алфавита (строчные и заглавные) и цифры (09). |

## Пример команды:

SCRIPTCOMMAND01=StartScript;

# Пример ответа:

SCRIPTCOMMAND01=StartScript;

#### **SCRIPTSCRIPTn**

Выбор исполняемого скрипта.

- Доступна через сервер и SMS.
- Версия прошивки: 13.24 и выше.
- Команда запроса: GSCRIPTSSCRIPT.

#### Формат команды:

SCRIPTSSCRIPTn="com1;com2;...comN;";

#### Параметры:

| n                 | Порядковый номер скрипта (0110).                                                                                                                                               |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| com1 com2<br>comN | Скрипт, который выполняется при передаче на контроллер «ярлыка» командой SCRIPTCOMMANDn. Состоит из отдельных текстовых команд, разделенных точкой с запятой. До 255 символов. |

#### Пример команды:

SCRIPTSCRIPT01="EVENTACTION01=2;EVENTSOURCE01=1;EVENTTYPE01=21;EVENTCONDITION01=1;";

#### Пример ответа:

SCRIPTSCRIPT01="EVENTACTION01=2;EVENTSOURCE01=1;EVENTTYPE01=21;EVENTCONDITION01=1;";

#### Пример использования скриптов:

Требуется заглушить двигатель транспортного средства, включив выход 1, но только в том случае, если транспортное средство стоит:

1. Создайте два «ярлыка»:

SCRIPTCOMMAND01=StopCar;
SCRIPTCOMMAND02=StartCar;

2. Далее создайте два скрипта, один из которых настраивает выключение выхода по событию остановки, а второй выключает это событие:

SCRIPTSCRIPT01="EVENTACTION01=800;EVENTTYPE01=21;EVENTCONDITION01=1;EVENTCOMMAND01=MOUT1=1; EVENTSOURCE01=1;";

SCRIPTSCRIPT02="EVENTACTION01=0;EVENTSOURCE01=0;EVENTTYPE01=0;EVENTCONDITION01=0; EVENTCOMMAND01=;EVENTDETRIGGER01;MOUT1=0;";

Теперь по команде StopCar на контроллере включится выход 1, но только тогда, когда автомобиль остановится.

По команда StartCar настройка события будет отключена, само событие выключено, и выход 1 также выключен.

# Передача файлов

| Список команд | Описание                                                                   |
|---------------|----------------------------------------------------------------------------|
| SENDALLLOG    | Включение режима передачи логов на сервер сразу после записи.              |
| FILEMEDIA     | Выбор каналов, через которые разрешена передача файлов (кроме фотографий). |
| FILESERVER    | Выбор сервера, на который идет передача файлов (логов).                    |
| DIRTREE       | Запись в лог полного списка файлов и директорий контроллера.               |
| MKFS          | Форматирование памяти.                                                     |
| STORAGESIZE   | Запрос размера оставшейся памяти.                                          |
| FORMATSPI     | Форматирование памяти SPI.                                                 |
| FORMATSD      | Форматирование памяти SD/RAM.                                              |

## **SENDALLLOG**

Включение режима передачи логов на сервер сразу после записи.

- Доступна через сервер и SMS.
- Версия прошивки: 01.02-а4 и выше.
- Команда запроса: GSENDALLLOG.

## Формат команды:

SENDALLLOG=x;

## Параметры:

|   | Режим передачи логов на сервер сразу после записи:                  |
|---|---------------------------------------------------------------------|
| x | • 1 — включен, после передачи логи удаляются из памяти контроллера; |
|   | • 0 — выключен.                                                     |

# Пример команды:

SENDALLLOG=1;

# Пример ответа:

SENDALLLOG=1;

## **FILEMEDIA**

Выбор каналов, через которые разрешена передача файлов (кроме фотографий).

- Доступна через сервер и SMS.
- Версия прошивки: 13.22 и выше.
- Команда запроса: GFILEMEDIA.

# Формат команды:

FILEMEDIA=media;

## Параметры:

|       | Канал передачи (физический носитель), через который разрешена передача данных:            |
|-------|-------------------------------------------------------------------------------------------|
|       | • 1 — передача файлов возможна только через GSM (модем 1);                                |
|       | • 2 — передача файлов возможна только через Wi-Fi;                                        |
|       | • 3 — передача файлов возможна через GSM (модем 1), и через Wi-Fi.                        |
| media | Для контроллеров со вторым модемом (АвтоГРАФ-АСН):                                        |
|       | • 4 — передача файлов возможна только через GSM (модем АвтоГРАФ-АСН);                     |
|       | • 5 — передача файлов возможна только через GSM (модем 1 и модем АвтоГРАФ-АСН);           |
|       | • 6 — передача файлов возможна только через GSM (модем АвтоГРАФ-АСН) и Wi-Fi;             |
|       | • 7 — передача файлов возможна и через GSM (модем 1 и модем АвтоГРАФ-АСН), и через Wi-Fi. |

## Пример команды:

FILEMEDIA=1;

# Пример ответа:

FILEMEDIA=1;

## **FILESERVER**

Выбор сервера, на который идет передача файлов (логов).

- Доступна через сервер и SMS.
- Версия прошивки: 01.02-а4 и выше.
- Команда запроса: GFILESERVER.

## Формат команды:

FILESERVER=x;

## Параметры:

| х | Номер сервера (1, 2, 3). |
|---|--------------------------|
|---|--------------------------|

## Пример команды:

FILESERVER=2;

# Пример ответа:

FILESERVER=2;

#### **DIRTREE**

Запись в лог полного списка файлов и директорий контроллера.

- Доступна через сервер и SMS.
- Версия прошивки: 13.23 и выше.
- Команда запроса: DIRTREE.

## Формат команды:

DIRTREE;

## Формат ответа:

DIRTREE=OK;

## Пример команды:

DIRTREE;

## Пример ответа:

DIRTREE=OK;

**Примечание.** После обработки команды <u>DIRTREE</u> полный список файлов и директорий контроллера записываются в текстовый лог-файл с префиксом DIR. Рекомендуется использовать эту команду совместно с командой SENDALLLOG=1; для оперативной передачи записанного лога на сервер.

## **MKFS**

Форматирование памяти.

- Доступна через сервер и SMS.
- Версия прошивки: 13.18 и выше.
- Команда запроса: —

# Формат команды:

MKFS=root\_dir;

## Параметры:

| root_dir | Имя корневого каталога.  Если корневой каталог «SPI», то отформатируется память на внутренней флеш (только та часть, где хранятся файлы; бинарные данные и настройки не удаляются).  Если <b>root_dir</b> — пустая строка (MKFS=;), то отформатируется SD память при ее наличии. При этом работа с файлами будет остановлена, а контроллер перезапущен аналогично реакции на команду RESET. |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

## Формат ответа:

MKFS=status;

## Параметры:

| status |
|--------|
|--------|

## Примеры команды:

MKFS=SPI;

MKFS=;

# Пример ответа:

MKFS=0K;

#### **STORAGESIZE**

Запрос размера оставшейся памяти.

- Доступна через сервер и SMS.
- Версия прошивки: 13.30-а2 и выше.
- Команда запроса: STORAGESIZE.

## Формат команды:

STORAGESIZE;

## Формат ответа:

STORAGESIZE=FlashId\_1,Total\_1,Free\_1,FlashId\_2,Total\_2,Free\_2;

## Параметры:

| FlashId_n | Тип хранилища n: • 0 — SPI; • 1 — RAM; • 2 — SD/MMC.        |
|-----------|-------------------------------------------------------------|
| Total_n   | Размер хранилища n, в килобайтах.                           |
| Free_n    | Размер свободного пространства в хранилище n, в килобайтах. |

#### Пример команды:

STORAGESIZE;

## Пример ответа:

STORAGESIZE=0,128,104;

STORAGESIZE=0,128,104,2,15265920,15251040;

**Примечание.** Количество блоков данных может меняться в зависимости от версии прошивки, количества областей памяти и наличия ошибок считывания.

## **FORMATSPI**

Форматирование памяти SPI.

- Доступна через сервер и SMS.
- Версия прошивки: 13.38 и выше.
- Команда запроса: —

## Формат команды:

FORMATSPI;

## Формат ответа:

FORMATSPI=status;

## Параметры:

| status | Статус выполнения: • ОК — успех; |
|--------|----------------------------------|
|        | • ERROR — ошибка.                |

## Примеры команды:

FORMATSPI;

## Пример ответа:

FORMATSPI=OK;

## **FORMATSD**

Форматирование памяти SD/RAM.

- Доступна через сервер и SMS.
- Версия прошивки: 13.38 и выше.
- Команда запроса: —

# Формат команды:

FORMATSD;

## Формат ответа:

FORMATSD=status;

## Параметры:

|        | Статус выполнения: |
|--------|--------------------|
| status | • OK — успех;      |
|        | • ERROR — ошибка.  |

## Примеры команды:

FORMATSD;

## Пример ответа:

FORMATSD=OK;

# Отладка

| Список команд | Описание                                       |
|---------------|------------------------------------------------|
| DEBUGCHANNELS | Выбор каналов логирования.                     |
| DEBUGREC      | Выбор режима фиксации диагностических записей. |

| Список групп параметров | Описание                                            |
|-------------------------|-----------------------------------------------------|
| DebugRecLevel           | Режимы фиксации диагностических записей.            |
| DebugModemReason        | Коды ошибок при передаче данных.                    |
| DbgChannels             | Номера битов, кодирующих источники debug сообщений. |

#### **DEBUGCHANNELS**

Выбор каналов логирования.

- Доступна через сервер и SMS.
- Версия прошивки: 01.02-а4 и выше.
- Команда запроса: GDEBUGCHANNELS.

## Формат команды:

DEBUGCHANNELS=channels;

## Параметры:

| channels | Число в формате HEX, битовая маска. Для разрешения источника соответствующий бит должен быть установлен в 0. Возможные каналы: см. DbgChannels. Для формирования команды настройки, рекомендуется использовать программный калькулятор. В формате HEX (шестнадцатеричный) выполните суммирование масок для включения соответствующих логов, затем вычислите инверсию. Полученное значение необходимо отправить контроллеру в качестве параметра команды. |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

## Пример команды:

Необходимо включить логи шин CAN 2 и i2c.

Для этого выполните суммирование масок **DBG\_CAN\_2** и **DBG\_I2C\_MAIN** в формате HEX: 8 + 40 = 48. Далее выполните инверсию (побитовую): 48 -> FFFFFFB7.

DEBUGCHANNELS=FFFFFB7;

## Пример ответа:

DEBUGCHANNELS=FFFFFB7;

## **DEBUGREC**

Выбор режима фиксации диагностических записей.

- Доступна через сервер и SMS.
- Версия прошивки: 01.02-а4 и выше.
- Команда запроса: GDEBUGREC.

## Формат команды:

DEBUGREC=mode;

## Параметры:

| mode | Режим работы диагностических записей (см. DebugRecLevel). |
|------|-----------------------------------------------------------|
|------|-----------------------------------------------------------|

## Пример команды:

DEBUGREC=1;

# Пример ответа:

DEBUGREC=1;

# DebugRecLevel

Режимы фиксации диагностических записей.

| DRL_MINIMAL = 0    | 0— минимальный уровень, запись в виде события первой ошибки, возникшей в каком-либо модуле (по одной на каждый защищенный модуль). |
|--------------------|------------------------------------------------------------------------------------------------------------------------------------|
| DRL_HARDWARE = 1   | 1 — увеличенный объем записей об ошибках (не более 5 в час на каждый защищенный модуль).                                           |
| DRL_EVENTS = 2     | 2 — записи при срабатывании событий (см. раздел «События»).                                                                        |
| DRL_NAVIGATION = 3 | 3 — записи об ошибках навигации.                                                                                                   |
| DRL_MODEM = 4      | 4 — записи об ошибках модема.                                                                                                      |

# DebugModemReason

Коды ошибок при передаче данных.

| DMR_NOANSWER = 0   | 0 — модем не ответил на команду.        |
|--------------------|-----------------------------------------|
| DMR_BUFF_ERROR = 1 | 1 — сбой буфера.                        |
| DMR_BLE_ERROR = 2  | 2 — нет данных по Bluetooth Low Energy. |

# **DbgChannels**

Номера битов, кодирующих источники debug сообщений.

| DBG_ALL_ENABLE = 0x00               | 0x00 — все логи включены.                                       |
|-------------------------------------|-----------------------------------------------------------------|
| DBG_COMMON_MSG = 0x01               | 0x01 — общий лог.                                               |
| DBG_PROG_SCRIPT = 0x02              | 0x02 — лог из скрипта app_prog_module.                          |
| DBG_CAN_1 = 0x04                    | 0x04 — лог с шины CAN 1.                                        |
| DBG_CAN_2 = 0x08                    | 0x08 — лог с шины CAN 2.                                        |
| DBG_CAN_3 = 0x10                    | 0x10 — лог с шины CAN 3.                                        |
| DBG_INTERNAL_PARAM_CONTAINER = 0x20 | 0x20 — для отладки app_param_container.                         |
| DBG_12C_MAIN = 0x40                 | 0x40 — основная шина i2c.                                       |
| DBG_NAV = 0x80                      | 0х80 — навигационный приемник.                                  |
| DBG_DRIVING = 0x100                 | 0x100 — лог контроля качества вождения.                         |
| DBG_AGL = 0x200                     | 0x200 — лог AGL.                                                |
| DBG_TKIA_RS232 = 0x400              | 0x400 — лог работы с адаптером интерфейсов TKIA по шине RS-232. |
| DBG_TACHO = 0x800                   | 0х800 — лог работы с тахографом.                                |
| DBG_FUEL_TANK = 0x1000              | 0x1000 — лог работы с системами Игла, Struna+.                  |
| DBG_BLE = 0x2000                    | 0x2000 — лог работы с Bluetooth Low Energy.                     |
| DBG_PPFLOW_1 = 0x4000               | 0х4000 — лог работы пассажиропотока по RS-485 (1).              |
| DBG_PPFLOW_2 = 0x8000               | 0x8000 — лог работы пассажиропотока по RS-485 (2).              |
| DBG_MODBUS = 0x10000                | 0x10000 — лог работы MODBUS.                                    |
| DBG_BLE_LL = 0x20000                | 0x20000 — лог работы с Bluetooth Low Energy, нижний уровень.    |
| DBG_PPFLOW_CAN = 0x40000            | 0x40000 — лог работы пассажиропотока по CAN.                    |

# Состояние контроллера

| Список команд | Описание                             |
|---------------|--------------------------------------|
| GSYSFLAGS     | Запрос системных флагов контроллера. |
| GDEVFLAGS     | Запрос флагов состояния контроллера. |
| GMODEMnSTATUS | Запрос статуса GSM связи.            |

## **GSYSFLAGS**

Запрос системных флагов контроллера.

- Доступна через сервер и SMS.
- Версия прошивки: 01.02-а4 и выше.

## Формат команды:

GSYSFLAGS;

## Формат ответа:

SYSFLAGS=S1V1,S2V2,...,SnVn;

## Параметры:

| s | Тип параметра: C — готовность конфигурации для работы с конфигуратором<br>АвтоГРАФ.GSMConf.         |
|---|-----------------------------------------------------------------------------------------------------|
| V | <ul> <li>Значение. Возможные типы и значения:</li> <li>1 — готов;</li> <li>0 — не готов.</li> </ul> |

# Пример команды:

GSYSFLAGS;

# Пример ответа:

GSYSFLAGS=C1;

## **GDEVFLAGS**

Запрос флагов состояния контроллера.

- Доступна через сервер и SMS.
- Версия прошивки: 01.02-а4 и выше.

## Формат команды:

GDEVFLAGS;

## Формат ответа:

GDEVFLAGS=S1V1,S2V2,...,SnVn;

## Параметры:

| S | Тип параметра:  • В — борт сеть (1 или 0);  • R — резервный источник питания внешний (1 или 0);  • А — АКБ внутренний (010);  • U — USB (1 или 0);  • G — фиксация GPS (1 или 0);  • S1 — связь с сервером 1 (1 или 0);  • S2 — связь с сервером 2 (1 или 0);  • S3 — связь с сервером 3 (1 или 0). |
|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| V | Значение, см. описание типа параметра.                                                                                                                                                                                                                                                              |

## Пример команды:

GDEVFLAGS;

## Пример ответа:

DEVFLAGS=B0,A5,U1;

## **GMODEMnSTATUS**

Запрос статуса GSM связи.

- Доступна через сервер и SMS.
- Версия прошивки: 01.02-а4 и выше.

## Формат команды:

GMODEMnSTATUS;

## Формат ответа:

MODEM1STATUS=RSSI,Q,S,P,G,R;

# Параметры:

| n    | Номер модема.                           |
|------|-----------------------------------------|
| RSSI | Значение RSSI (0—127).                  |
| Q    | Качество сигнала — signalQuality (099). |
| S    | Номер SIM-карты (1 или 2).              |
| Р    | Модем включен (0 или 1).                |
| G    | GPRS активен (0 или 1).                 |
| R    | Роуминг (0 или 1).                      |

## Пример команды:

GMODEM1STATUS;

## Пример ответа:

MODEM1STATUS=0,85,1,1,1,0;

# Сервис параметров АвтоГРАФ

| Список команд   | Описание                    |
|-----------------|-----------------------------|
| CANPARAMSERVICE | Настройка параметра CAN.    |
| CANPARAMTEST    | Тестирование параметра CAN. |

| Список групп параметров | Описание         |
|-------------------------|------------------|
| CanServiceParamType     | Типы параметров. |

#### **CANPARAMSERVICE**

Настройка параметра CAN.

- Доступна через сервер и SMS.
- Версия прошивки: 13.36 и выше.
- Команда запроса: GCANPARAMSERVICE.

## Формат команды:

CANPARAMSERVICEn=type,idBase:parameter;

#### Формат ответа:

CANPARAMSERVICEn=type,idBase,idParam,time,received,value;

## Параметры:

| n         | Номер настройки в контроллере (132).                                                                                |
|-----------|---------------------------------------------------------------------------------------------------------------------|
| type      | Тип параметра (см. CanServiceParamType).                                                                            |
| idBase    | Идентификатор параметра в базе ТехноКом.                                                                            |
| idParam   | Номер параметра в контроллере, зависит от типа параметра (см. Levelld, LongParamld, DiscrParamld, GenericParamsld). |
| parameter | Значения параметра в закодированном виде.                                                                           |
| time      | Время с предыдущего успешного получения параметра, в миллисекундах.                                                 |
| received  | Был ли получен параметр с предыдущего запроса:  • 1 — был получен;  • 0 — не был получен.                           |
| value     | Последнее полученное значение параметра.                                                                            |

#### Пример команды:

CANPARAMSERVICE3=2,123:l23hcNNyuZlKlavjcbUHQDWh6DFDShDqm1smbm0Bg4T6wY421yCwY0A65oBfFtMj6HaHBQld0yMkJ59s5iE 6Ql1gLB3v7QKBJG91rqEbb2Pt3Ek6re3pdlJTBhP3skjaa/HEof6J8P75W6Nui1tvoqjTP5tlLUhlcr/b2B/sCbk=;

## Пример ответа:

CANPARAMSERVICE3=2,123,10,248701,0,0;

#### **CANPARAMTEST**

Тестирование параметра CAN.

- Доступна через сервер и SMS.
- Версия прошивки: 13.36 и выше.
- Команда запроса: GCANPARAMTEST.

#### Формат команды:

CANPARAMTEST=timeout,type,idBase:parameter;

#### Формат ответа:

CANPARAMTEST=type,idBase,idParam,time,received,value;

#### Параметры:

| timeout   | Время ожидания параметра, в миллисекундах (04294967295).                                                            |
|-----------|---------------------------------------------------------------------------------------------------------------------|
| type      | Тип параметра (см. CanServiceParamType).                                                                            |
| idBase    | Идентификатор параметра в базе ТехноКом.                                                                            |
| idParam   | Номер параметра в контроллере, зависит от типа параметра (см. Levelld, LongParamld, DiscrParamld, GenericParamsld). |
| parameter | Значения параметра в закодированном виде.                                                                           |
| time      | Время с предыдущего успешного получения параметра, в миллисекундах.                                                 |
| received  | Был ли получен параметр с предыдущего запроса:  • 1 — был получен;  • 0 — не был получен.                           |
| value     | Последнее полученное значение параметра.                                                                            |

#### Пример команды:

CANPARAMTEST=1000,2,123:l23hcNNyuZlKlavjcbUHQDWh6DFDShDqm1smbm0Bg4T6wY421yCwY0A65oBfFtMj6HaHBQld0yMkJ59s5iE 6Ql1gLB3v7QKBJG91rqEbb2Pt3Ek6re3pdlJTBhP3skjaa/HEof6J8P75W6Nui1tvoqjTP5tlLUhlcr/b2B/sCbk=;

#### Пример ответа:

CANPARAMTEST=2,123,10,2,1,1;

**Примечание.** Следует учитывать, что установка для параметра **timeout** значения, превышающего сутки, может привести к тому, что контроллер не выйдет из ожидания до следующего автоматического перезапуска или перезапуска по питанию.

# CanServiceParamType

Типы параметров.

| CSP_OFF = 0       | 0 — параметр отключен.                |
|-------------------|---------------------------------------|
| CSP_LEVEL         | 1 — уровневый параметр.               |
| CSP_DISCR         | 2 — дискретный параметр.              |
| CSP_LONG          | 3 — длинный параметр.                 |
| CSP_GENERIC_LEVEL | 4 — уровневый произвольный параметр.  |
| CSP_GENERIC_DISCR | 5 — дискретный произвольный параметр. |

# Таймер

| Список команд | Описание                                                                                           |
|---------------|----------------------------------------------------------------------------------------------------|
| RTCTIMER      | Установка времени во внутреннем таймере контроллера.                                               |
| TIMERSOURCE   | Выбор источника времени.                                                                           |
| NTPSERVERn    | Указание сервера NTP (Network Time Protocol — протокол сетевого времени) для синхронизации данных. |

# **RTCTIMER**

Установка времени во внутреннем таймере контроллера.

- Доступна через сервер и SMS.
- Версия прошивки: 13.10 и выше.
- Команда запроса: GRTCTIMER.

# Формат команды:

RTCTIMER=time;

# Параметры:

| time | Время внутреннего таймера контроллера, Unix Timestamp, в секундах с 00:00:00 1 января 1970 года. |
|------|--------------------------------------------------------------------------------------------------|
|------|--------------------------------------------------------------------------------------------------|

# Пример команды:

RTCTIMER=1675245065;

# Пример ответа:

RTCTIMER=1675245065;

#### **TIMERSOURCE**

Выбор источника времени.

- Доступна через сервер и SMS.
- Версия прошивки: 13.38 и выше.
- Команда запроса: GTIMERSOURCE.

#### Формат команды:

TIMERSOURCE=source;

#### Параметры:

| source | <ul> <li>Источник, по которому контроллер корректирует внутренний таймер и делает записи. Может быть суммой значений:</li> <li>1 — время с навигационного приемника;</li> <li>2 — время с сервера NTP (Network Time Protocol — протокол сетевого времени) через GSM;</li> </ul> |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|        | • 4 — время с сервера NTP (Network Time Protocol — протокол сетевого времени) через Wi-Fi.                                                                                                                                                                                      |

#### Пример команды:

TIMERSOURCE=1;

#### Пример ответа:

TIMERSOURCE=1:

**Примечание.** В случае, если выбран источник времени и по навигационному приемнику, и с NTP сервера, для коррекции внутреннего таймера будет использоваться время с NTP сервера. Если синхронизации с NTP сервера нет больше двух часов, то внутренний таймер будет синхронизироваться с навигационного приемника. При этом, если есть достоверный прием координат, то время в записях будет браться с навигационного приемника.

**Внимание!** Если выбрать источник времени только с NTP сервера, без навигационного приемника, то время во всех записях будет браться только с NTP сервера независимо от достоверности приема координат.

# **NTPSERVERn**

Указание сервера NTP (Network Time Protocol — протокол сетевого времени) для синхронизации данных.

- Доступна через сервер и SMS.
- Версия прошивки: 13.38 и выше.
- Команда запроса: GNTPSERVERn.

# Формат команды:

NTPSERVERn=server;

# Параметры:

| n      | Порядковый номер сервера (13). |
|--------|--------------------------------|
| server | Адрес сервера.                 |

# Пример команды:

NTPSERVER1=pool.ntp.org;

# Пример ответа:

NTPSERVER1=pool.ntp.org;

# Bluetooth low energy

| Список команд    | Описание                                                                                  |
|------------------|-------------------------------------------------------------------------------------------|
| BLELABEL         | Включение записи меток BLE.                                                               |
| BLENAMES         | Включение записи имен BLE меток.                                                          |
| BLECOORDS        | Включение записи координат с BLE меток.                                                   |
| MKWLPIN          | Установка PIN кода, используемого для расшифровки дополнительных данных меток BLE (MKWL). |
| BLEDISABLE       | Отключение работы BLE.                                                                    |
| BLEIDREPEATWRITE | Установка таймаута повторной записи идентификатора BLE.                                   |
| GBLEVERSION      | Запрос версии прошивки BLE.                                                               |

# **BLELABEL**

Включение записи меток BLE.

- Команда разрешает или запрещает запись меток bluetooth.
- Доступна через сервер и SMS.
- Версия прошивки: AGXX-13.34 и выше.
- Команда запроса: BLELABEL.

# Формат команды:

BLELABEL=on;

# Параметры:

|    | Включение записи меток BLE: |
|----|-----------------------------|
| on | • 0 — отключено;            |
|    | • 1 — включено.             |

# Пример команды:

BLELABEL=1;

# Пример ответа:

BLELABEL=1;

# **BLENAMES**

Включение записи имен BLE меток.

- Команда разрешает или запрещает запись имен BLE меток.
- Доступна через сервер и SMS.
- Версия прошивки: AGXX-13.37 и выше.
- Команда запроса: BLENAMES.

# Формат команды:

BLENAMES=on;

# Параметры:

|    | Включение записи имен BLE меток: |
|----|----------------------------------|
| on | • 0 — отключено;                 |
|    | • 1 — включено.                  |

# Пример команды:

BLENAMES=1;

# Пример ответа:

BLENAMES=1;

# **BLECOORDS**

Включение записи координат с BLE меток.

- Команда разрешает или запрещает запись координат с BLE меток.
- Доступна через сервер и SMS.
- Версия прошивки: AGXX-13.37 и выше.
- Команда запроса: BLECOORDS.

# Формат команды:

BLECOORDS=on;

# Параметры:

|    | Включение записи координат с BLE меток: |
|----|-----------------------------------------|
| on | • 0 — отключено;                        |
|    | • 1 — включено.                         |

# Пример команды:

BLECOORDS=1;

# Пример ответа:

BLECOORDS=1;

# **MKWLPIN**

Установка PIN кода, используемого для расшифровки дополнительных данных меток BLE (MKWL).

- Доступна через сервер и SMS.
- Версия прошивки: 13.37 и выше.
- Команда запроса: GMKWLPIN.

# Формат команды:

MKWLPIN=A;

# Параметры:

| Α | PIN код метки, 4 символа. |
|---|---------------------------|
|---|---------------------------|

**Примечание.** PIN код используется при получении координат и имени с метки.

# Пример команды:

MKWLPIN=1234;

# Пример ответа:

MKWLPIN=1234;

# **BLEDISABLE**

Отключение работы BLE.

- Команда отключает питание BLE-модуля.
- Доступна через сервер и SMS.
- Версия прошивки:
- Команда запроса: BLEDISABLE.

# Формат команды:

BLEDISABLE=x;

# Параметры:

|   | Отключение работы BLE:  |
|---|-------------------------|
| x | • 1 — работа отключена; |
|   | • 0 — работа возможна.  |

# Пример команды:

BLEDISABLE=1;

# Пример ответа:

BLEDISABLE=1;

# **BLEIDREPEATWRITE**

Установка таймаута повторной записи идентификатора BLE.

- Команда позволяет установить период повторной записи идентификатора BLE при его повторном приеме. Первая запись идентификатора при его приеме выполняется всегда независимо от данной настройки.
- Доступна через сервер и SMS.
- Версия прошивки:
- Команда запроса: GBLEIDREPEATWRITE.

# Формат команды:

BLEIDREPEATWRITE=x;

# Параметры:

| х | Таймаут, в секундах (03600). 0 — повторная запись идентификатора выполняется при каждом приеме идентификатора. |
|---|----------------------------------------------------------------------------------------------------------------|
|---|----------------------------------------------------------------------------------------------------------------|

# Пример команды:

BLEIDREPEATWRITE=10;

# Пример ответа:

BLEIDREPEATWRITE=10;

# **GBLEVERSION**

Запрос версии прошивки BLE.

- Команда возвращает версию прошивки BLE.
- Доступна через сервер и SMS.
- Версия прошивки:
- Команда запроса: GBLEVERSION.

# Формат команды:

**GBLEVERSION**;

# Формат ответа:

BLEVERSION=x;

# Параметры:

| х | Версия прошивки. |
|---|------------------|
|---|------------------|

# Пример команды:

GBLEVERSION;

# Пример ответа:

BLEVERSION=AGBT-01.11;

# Энергосбережение

| Список команд        | Описание                                                                                                   |
|----------------------|------------------------------------------------------------------------------------------------------------|
| MODEMECONOMY         | Включение режима экономии модема.                                                                          |
| WIFIECONOMY          | Включение режима экономии Wi-Fi.                                                                           |
| WIFILEDDISABLE       | Отключение индикации Wi-Fi.                                                                                |
| NAVLEDDISABLE        | Отключение индикации навигационного приемника.                                                             |
| NAVECONOMY           | Включение режима экономии навигационного приемника.                                                        |
| NAVWORKGOOD          | Установка времени работы при хорошем приеме координат.                                                     |
| NAVSLEEPGOOD         | Установка времени сна при хорошем приеме координат.                                                        |
| NAVWORKBAD           | Установка времени работы при отсутствии приема координат.                                                  |
| NAVSLEEPBAD          | Установка времени сна при отсутствии приема координат.                                                     |
| POWERSRCAVL          | Запрос доступных источников питания.                                                                       |
| POWERSRCUSED         | Запрос задействованных источников питания.                                                                 |
| ECONOMYSOURCE        | Выбор источника события для входа в режим экономии.                                                        |
| ECONOMYWAKESOURCE    | Выбор источника события для выхода из режима экономии (пробуждения).                                       |
| ECONOMYTYPE          | Установка типа (или параметра) события для входа в режим экономии.                                         |
| ECONOMYWAKETYPE      | Установка типа (или параметра) события для выхода из режима экономии (пробуждения).                        |
| ECONOMYCONDITION     | Установка состояния типа или параметра, при котором контроллер считает себя находящемся в режиме экономии. |
| ECONOMYWAKECONDITION | Установка состояния типа или параметра, при котором контроллер выходит из режима экономии (просыпается).   |
| ECONOMYDELAY         | Установка задержки срабатывания входа в режим экономии.                                                    |
| ECONOMYWAKEDELAY     | Установка задержки срабатывания выхода из режима экономии (пробуждения).                                   |
| ECONOMYTIMERDURATION | Установка продолжительности включения режима экономии по таймеру.                                          |
| ECONOMYACTION        | Выбор действий в режиме экономии.                                                                          |
| ECONOMYPULSE         | Установка длительности импульса на выходе контроллера при входе в режим экономии.                          |
| ECONOMYSTARTCOMMAND  | Назначение текстовой команды, которая будет выполнена при входе в режим экономии.                          |
| ECONOMYSTOPCOMMAND   | Назначение текстовой команды, которая будет выполнена при выходе из режима экономии.                       |
| ECONOMYTRIGGER       | Принудительное переключение в режим экономии.                                                              |
| ECONOMYDETRIGGER     | Принудительный выход из режима экономии (пробуждение).                                                     |
| ECONOMYSTATE         | Запрос состояния режима экономии.                                                                          |
|                      | <u> </u>                                                                                                   |

| Список команд           | Описание                                                                                                                    |
|-------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| ECONOMYFLAG             | Назначение номера флага или входа, который включается при выборе действия «включить флаг или виртуальный вход контроллера». |
| MODEMmECONOMYPERIODSEND | Установка периода отправки данных на сервер по GSM каналу в режиме экономии.                                                |

| Список групп параметров | Описание                                                                                                                       |
|-------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| PowerSrc                | Источники питания.                                                                                                             |
| EconomyActions          | Флаги действий экономии энергии (HEX). Может быть задано одновременно несколько флагов (в виде суммы шестнадцатеричных чисел). |

#### MODEMECONOMY

Включение режима экономии модема.

- Команда включает или выключает режим экономии модема.
- Доступна через сервер и SMS.
- Версия прошивки: 01.15 и выше.
- Команда запроса: GMODEMECONOMY.

# Формат команды:

MODEMECONOMY=on;

# Параметры:

|    | Включение режима экономии модема: |
|----|-----------------------------------|
| on | • 0 — выключен;                   |
|    | • 1 — включен.                    |

### Пример команды:

MODEMECONOMY=1;

# Пример ответа:

MODEMECONOMY=1;

**Примечание.** В режиме экономии контроллер переводит модем в спящий режим после передачи данных. При этом входящие звонки и SMS-сообщения продолжают работать. Также в режиме сна модема его светодиодный индикатор выключается.

# **WIFIECONOMY**

Включение режима экономии Wi-Fi.

- Команда включает или выключает режим экономии Wi-Fi.
- Доступна через сервер и SMS.
- Версия прошивки: 01.15 и выше.
- Команда запроса: GWIFIECONOMY.

# Формат команды:

WIFIECONOMY=on;

# Параметры:

|    | Включение режима экономии Wi-Fi: |
|----|----------------------------------|
| on | • 0 — выключен;                  |
|    | • 1 — включен.                   |

# Пример команды:

WIFIECONOMY=1;

# Пример ответа:

WIFIECONOMY=1;

**Примечание.** В режиме экономии контроллер переводит модуль Wi-Fi в спящий режим после передачи данных. Также в режиме сна модуля Wi-Fi его светодиодный индикатор выключается.

# WIFILEDDISABLE

Отключение индикации Wi-Fi.

- Доступна через сервер и SMS.
- Версия прошивки: 01.15 и выше.
- Команда запроса: GWIFILEDDISABLE.

# Формат команды:

WIFILEDDISABLE=x;

# Параметры:

|   | Отключить индикацию Wi-Fi:       |
|---|----------------------------------|
| x | • 1 — индикация Wi-Fi отключена; |
|   | • 0 — индикация Wi-Fi разрешена. |

# Пример команды:

WIFILEDDISABLE=1;

# Пример ответа:

WIFILEDDISABLE=1;

# **NAVLEDDISABLE**

Отключение индикации навигационного приемника.

- Доступна через сервер и SMS.
- Версия прошивки: 01.15 и выше.
- Команда запроса: GNAVLEDDISABLE.

# Формат команды:

NAVLEDDISABLE=x;

# Параметры:

|   | Отключить индикацию навигационного приемника: |
|---|-----------------------------------------------|
| х | • 1 — индикация отключена;                    |
|   | • 0 — индикация разрешена.                    |

# Пример команды:

NAVLEDDISABLE=1;

# Пример ответа:

NAVLEDDISABLE=1;

#### **NAVECONOMY**

Включение режима экономии навигационного приемника.

- Команда включает или выключает режим экономии навигационного приемника.
- Доступна через сервер и SMS.
- Версия прошивки: 01.15 и выше.
- Команда запроса: GNAVECONOMY.

# Формат команды:

NAVECONOMY=on;

#### Параметры:

|    | Включение режима экономии приемника: |
|----|--------------------------------------|
| on | • 0 — выключен;                      |
|    | • 1 — включен.                       |

#### Пример команды:

NAVECONOMY=1;

#### Пример ответа:

NAVECONOMY=1;

**Примечание.** В режиме экономии контроллер периодически переводит приемник в спящий режим после передачи данных. В режиме сна у приемника выключается светодиодная индикация приемника и значительно снижается потребление. Периоды сна и работы задаются командами: <u>NAVWORKGOOD</u>, <u>NAVSLEEPGOOD</u>, NAVWORKBAD, NAVSLEEPBAD.

#### **NAVWORKGOOD**

Установка времени работы при хорошем приеме координат.

- Команда задает время работы навигационного приемника в режиме экономии при хорошем приеме координат.
- Доступна через сервер и SMS.
- Версия прошивки: 01.15 и выше.
- Команда запроса: GNAVWORKGOOD.

#### Формат команды:

NAVWORKGOOD=time;

#### Параметры:

| time | Время работы навигационного приемника, в секундах (10518400). |
|------|---------------------------------------------------------------|
|------|---------------------------------------------------------------|

# Пример команды:

NAVWORKGOOD=30;

# Пример ответа:

NAVWORKGOOD=30;

**Примечание.** Следует учитывать, что при установке для параметра **time** значения, превышающего сутки, работа приемника в течение заданного времени не гарантируется из-за автоматического ежесуточного перезапуска контроллера.

#### **NAVSLEEPGOOD**

Установка времени сна при хорошем приеме координат.

- Команда задает время сна навигационного приемника в режиме экономии при хорошем приеме координат.
- Доступна через сервер и SMS.
- Версия прошивки: 01.15 и выше.
- Команда запроса: GNAVSLEEPGOOD.

#### Формат команды:

NAVSLEEPGOOD=time;

# Параметры:

| time | Время работы навигационного приемника, в секундах (0518400).  0 — отключает режим сна во время режима экономии при хорошем приеме |
|------|-----------------------------------------------------------------------------------------------------------------------------------|
|      | координат.                                                                                                                        |

#### Пример команды:

NAVSLEEPGOOD=0;

# Пример ответа:

NAVSLEEPGOOD=0;

**Примечание.** Следует учитывать, что при установке для параметра **time** значения, превышающего сутки, отключение приемника на заданное время не гарантируется из-за автоматического ежесуточного перезапуска контроллера.

#### **NAVWORKBAD**

Установка времени работы при отсутствии приема координат.

- Команда задает время работы навигационного приемника в режиме экономии при отсутствии приема координат.
- Доступна через сервер и SMS.
- Версия прошивки: 01.15 и выше.
- Команда запроса: GNAVWORKBAD.

#### Формат команды:

NAVWORKBAD=time;

#### Параметры:

| time | Время работы навигационного приемника, в секундах (10518400). |
|------|---------------------------------------------------------------|
|------|---------------------------------------------------------------|

# Пример команды:

NAVWORKBAD=60;

#### Пример ответа:

NAVWORKBAD=60;

**Примечание.** Не рекомендуется задавать слишком маленькое время работы при отсутствии приема координат, так как этого времени может не хватить приемнику для фиксации координат.

**Примечание.** Следует учитывать, что при установке для параметра **time** значения, превышающего сутки, работа приемника в течение заданного времени не гарантируется из-за автоматического ежесуточного перезапуска контроллера.

#### **NAVSLEEPBAD**

Установка времени сна при отсутствии приема координат.

- Команда задает время сна навигационного приемника в режиме экономии при отсутствии приема координат.
- Доступна через сервер и SMS.
- Версия прошивки: 01.15 и выше.
- Команда запроса: GNAVSLEEPBAD.

#### Формат команды:

NAVSLEEPBAD=time;

# Параметры:

| time | Время работы навигационного приемника, в секундах (0518400).  0 — отключает режим сна во время режима экономии при отсутствии приема |
|------|--------------------------------------------------------------------------------------------------------------------------------------|
|      | координат.                                                                                                                           |

# Пример команды:

NAVSLEEPBAD=120;

#### Пример ответа:

NAVSLEEPBAD=120;

**Примечание.** Следует учитывать, что при установке для параметра **time** значения, превышающего сутки, отключение приемника на заданное время не гарантируется из-за автоматического ежесуточного перезапуска контроллера.

# **POWERSRCAVL**

Запрос доступных источников питания.

- Доступна через сервер и SMS.
- Версия прошивки:
- Komaнда запроса: GPOWERSRCAVL. И <u>POWERSRCAVL</u>, и GPOWERSRCAVL работают одинаково, на запрос.

# Формат команды:

POWERSRCAVL=src;

# Параметры:

| src | Доступные источники питания, битовое поле в формате HEX (см. <u>PowerSrc</u> ). |
|-----|---------------------------------------------------------------------------------|
|-----|---------------------------------------------------------------------------------|

# Пример команды:

GPOWERSRCAVL;

# Пример ответа:

POWERSRCAVL=00000007;

# **POWERSRCUSED**

Запрос задействованных источников питания.

- Доступна через сервер и SMS.
- Версия прошивки:
- Komaнда запроса: GPOWERSRCUSED. И <u>POWERSRCUSED</u>, и GPOWERSRCUSED работают одинаково, на запрос.

# Формат команды:

POWERSRCUSED=src;

# Параметры:

| src | Доступные источники питания, битовое поле в HEX (см. PowerSrc). |
|-----|-----------------------------------------------------------------|
|     |                                                                 |

# Пример команды:

GPOWERSRCUSED;

# Пример ответа:

POWERSRCUSED=00000006;

#### **ECONOMYSOURCE**

Выбор источника события для входа в режим экономии.

- Доступна через сервер и SMS.
- Версия прошивки: 13.37 и выше.
- Команда запроса: GECONOMYSOURCE.

# Формат команды:

ECONOMYSOURCE=source;

# Параметры:

| source | Источник события (см. EventSource). |
|--------|-------------------------------------|
|--------|-------------------------------------|

# Пример команды:

ECONOMYSOURCE=1;

# Пример ответа:

ECONOMYSOURCE=1;

**Примечание.** Значение ET\_PERIODIC не может использоваться в данной команде.

# **ECONOMYWAKESOURCE**

Выбор источника события для выхода из режима экономии (пробуждения).

- Доступна через сервер и SMS.
- Версия прошивки: 13.37 и выше.
- Команда запроса: GECONOMYWAKESOURCE.

# Формат команды:

ECONOMYWAKESOURCE=source;

# Параметры:

| source | Источник события (см. EventSource). |
|--------|-------------------------------------|
|--------|-------------------------------------|

# Пример команды:

ECONOMYWAKESOURCE=1;

# Пример ответа:

ECONOMYWAKESOURCE=1;

# **ECONOMYTYPE**

Установка типа (или параметра) события для входа в режим экономии.

- Доступна через сервер и SMS.
- Версия прошивки: 13.37 и выше.
- Команда запроса: GECONOMYTYPE.

# Формат команды:

ECONOMYTYPE=type;

# Параметры:

| type | <ul> <li>Тип (или параметр) события. Зависит от ECONOMYSOURCE:</li> <li>если ECONOMYSOURCE события равен 1, то в типе задается номер флага контроллера (см. DeviceFlags);</li> <li>если ECONOMYSOURCE события равен 2, то в типе задается номер адаптива — значение x команды ADAPTIVE;</li> <li>если ECONOMYSOURCE события равен 3, то в типе задается номер дискретного параметра (см. DiscrParamId);</li> <li>если ECONOMYSOURCE события равен 6, то в типе задается номер входа контроллера (см. DeviceInputsFlags);</li> <li>если ECONOMYSOURCE события равен 9, то в типе задается тип таймера (см. EventTimerType);</li> <li>при прочих ECONOMYSOURCE тип не учитывается.</li> </ul> |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

# Пример команды:

ECONOMYTYPE=1;

# Пример ответа:

ECONOMYTYPE=1;

# **ECONOMYWAKETYPE**

Установка типа (или параметра) события для выхода из режима экономии (пробуждения).

- Доступна через сервер и SMS.
- Версия прошивки: 13.37 и выше.
- Команда запроса: GECONOMYWAKETYPE.

# Формат команды:

ECONOMYWAKETYPE=type;

# Параметры:

| type | <ul> <li>Тип (или параметр) события. Зависит от ECONOMYWAKESOURCE:</li> <li>если ECONOMYWAKESOURCE события равен 1, то в типе задается номер флага контроллера (см. DeviceFlags);</li> <li>если ECONOMYWAKESOURCE события равен 2, то в типе задается номер адаптива — значение х команды ADAPTIVE;</li> <li>если ECONOMYWAKESOURCE события равен 3, то в типе задается номер дискретного параметра (см. DiscrParamId);</li> <li>если ECONOMYWAKESOURCE события равен 6, то в типе задается номер входа контроллера (см. DeviceInputsFlags);</li> <li>если ECONOMYWAKESOURCE события равен 9, то в типе задается тип таймера</li> </ul> |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      | (см. EventTimerType); при прочих ECONOMYWAKESOURCE тип не учитывается.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

# Пример команды:

ECONOMYWAKETYPE=1;

# Пример ответа:

ECONOMYWAKETYPE=1;

#### **ECONOMYCONDITION**

Установка состояния типа или параметра, при котором контроллер считает себя находящемся в режиме экономии.

- Доступна через сервер и SMS.
- Версия прошивки: 13.37 и выше.
- Команда запроса: GECONOMYCONDITION.

# Формат команды:

ECONOMYCONDITION=con;

# Параметры:

| con | <ul> <li>Состояние типа или параметра, при котором происходит срабатывание события.</li> <li>Зависит от ECONOMYSOURCE:</li> <li>если ECONOMYSOURCE события равен 1, то в параметре задается состояние флага контроллера (0 или 1);</li> <li>если ECONOMYSOURCE события равен 2, то в параметре задается тип срабатывания адаптива (см. AdaptiveLevelEvent_doc или AdaptiveDiscreteEvent_doc);</li> <li>если ECONOMYSOURCE события равен 3, то в параметре задается состояние дискретного параметра (зависит от DiscrParamId, 04294967295);</li> <li>если ECONOMYSOURCE события равен 6, то в параметре задается состояние входа контроллера (0 или 1);</li> <li>если ECONOMYSOURCE события равен 9, то в параметре задается время начала</li> </ul> |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | <ul> <li>если ECONOMYSOURCE события равен 9, то в параметре задается время начала события (см. примечание).</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

# Пример команды:

ECONOMYCONDITION=1;

# Пример ответа:

ECONOMYCONDITION=1;

**Примечание.** Время начала события при <u>ECONOMYSOURCE</u> равном 9 зависит от типа таймера <u>ECONOMYTYPE</u> (см. EventTimerType). Время задается в UTC (GMT+0).

При ECONOMYTYPE равном 1 (суточный таймер):

# Формат команды:

ECONOMYCONDITION=HHHHmm;

# Параметры:

| n    | Номер события (0116).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| НННН | Номер события (0116).  Часы, в которые разрешено срабатывание таймера. Представляет собой сумму следующих значений, в десятичном виде:  1 — таймер срабатывает в 00 часов;  2 — таймер срабатывает в 01 час;  4 — таймер срабатывает в 02 часа;  8 — таймер срабатывает в 03 часов;  16 — таймер срабатывает в 03 часов;  22 — таймер срабатывает в 05 часов;  4 — таймер срабатывает в 06 часов;  23 — таймер срабатывает в 07 часов;  25 — таймер срабатывает в 07 часов;  25 — таймер срабатывает в 10 часов;  204 — таймер срабатывает в 10 часов;  4096 — таймер срабатывает в 11 часов;  4096 — таймер срабатывает в 13 часов;  131072 — таймер срабатывает в 14 часов;  252144 — таймер срабатывает в 17 часов;  252144 — таймер срабатывает в 18 часов;  131072 — таймер срабатывает в 18 часов;  262144 — таймер срабатывает в 19 часов;  262145 — таймер срабатывает в 19 часов;  262146 — таймер срабатывает в 19 часов;  262175 — таймер срабатывает в 20 часов;  2097152 — таймер срабатывает в 21 час;  4194304 — таймер срабатывает в 22 часа;  8388608 — таймер срабатывает в 23 часа.  При <b>НННН</b> = 0 таймер будет срабатывать каждый час. |
| mm   | Минута, в которую запустится таймер (обязательно две цифры).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

Пример команды: таймер срабатывает каждый час в 5 минут:

ECONOMYCONDITION=05;

Пример команды: таймер срабатывает каждый день в 00:06 и 09:06:

ECONOMYCONDITION=51306;

При ECONOMYTYPE равном 2 (недельный таймер):

# Формат команды:

ECONOMYCONDITION=DDDDHHmm;

# Параметры:

| n    | Номер события (0116).                                                                                                                                                                                                                                                                                                                                                                                                                           |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DDDD | Дни недели, в которые разрешено срабатывание таймера. Представляет собой сумму следующих значений, в десятичном виде:  1 — таймер срабатывает в воскресенье;  2 — таймер срабатывает в понедельник;  4 — таймер срабатывает во вторник;  8 — таймер срабатывает в среду;  16 — таймер срабатывает в четверг;  32 — таймер срабатывает в пятницу;  64 — таймер срабатывает в субботу.  При <b>DDDD</b> = 0 таймер будет срабатывать каждый день. |
| нн   | Час, в который запустится таймер (обязательно две цифры).                                                                                                                                                                                                                                                                                                                                                                                       |
| mm   | Минута, в которую запустится таймер (обязательно две цифры).                                                                                                                                                                                                                                                                                                                                                                                    |

Пример команды: таймер срабатывает каждый день в 11:05:

ECONOMYCONDITION=1105;

Пример команды: таймер срабатывает в воскресенье, понедельник и вторник в 01:06:

ECONOMYCONDITION=70106;

При ECONOMYTYPE равном 3 (годовой таймер):

# Формат команды:

ECONOMYCONDITION=MMMMDDHHmm;

# Параметры:

| n   | Номер события (0116).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ммм | Месяцы, в которые разрешено срабатывание таймера. Представляет собой сумму следующих значений, в десятичном виде:  1 — таймер срабатывает в январе;  2 — таймер срабатывает в феврале;  4 — таймер срабатывает в марте;  8 — таймер срабатывает в апреле;  16 — таймер срабатывает в мае;  32 — таймер срабатывает в июне;  64 — таймер срабатывает в июле;  128 — таймер срабатывает в августе;  256 — таймер срабатывает в сентябре;  512 — таймер срабатывает в октябре;  1024 — таймер срабатывает в ноябре;  2048 — таймер срабатывает в декабре. |
| DD  | День месяца, в который запустится таймер (обязательно две цифры).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| нн  | Час, в который запустится таймер (обязательно две цифры).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| mm  | Минуты, в которые запустится таймер (обязательно две цифры).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

Пример команды: таймер срабатывает каждый месяц в первое число в 10:05:

ECONOMYCONDITION=011005;

Пример команды: таймер срабатывает 10го числа в марте и апреле в 05:26:

ECONOMYCONDITION=12100526;

#### **ECONOMYWAKECONDITION**

Установка состояния типа или параметра, при котором контроллер выходит из режима экономии (просыпается).

- Доступна через сервер и SMS.
- Версия прошивки: 13.37 и выше.
- Команда запроса: GECONOMYWAKECONDITION.

#### Формат команды:

ECONOMYWAKECONDITION=con;

#### Параметры:

Состояние типа или параметра, при котором происходит срабатывание события. Зависит от ECONOMYWAKESOURCE: • если ECONOMYWAKESOURCE события равен 1, то в параметре задается состояние флага контроллера (0 или 1); ECONOMYWAKESOURCE равен если события 2, то параметре задается тип срабатывания адаптива (см. AdaptiveLevelEvent doc AdaptiveDiscreteEvent\_doc); • если ECONOMYWAKESOURCE события равен 3, то в параметре задается состояние дискретного параметра (зависит от DiscrParamld, 0...4294967295); con если ECONOMYWAKESOURCE события равен 6, то в параметре задается состояние входа контроллера (0 или 1); • если ECONOMYWAKESOURCE события равен 9, то в параметре задается время выхода из режима экономии (см. примечание); если ECONOMYWAKESOURCE события равен 10, то в параметре задается период выхода из режима экономии в минутах (0...64800). О — периодический выход из режима экономии не выполняется. При установке значения больше 64800 используется значение 64800, несмотря на то, что команда запроса возвращает реально установленное значение.

#### Пример команды:

ECONOMYWAKECONDITION=1;

#### Пример ответа:

ECONOMYWAKECONDITION=1:

**Примечание.** Время начала события при <u>ECONOMYWAKESOURCE</u> равном 9 зависит от типа таймера ECONOMYWAKETYPE (см. EventTimerType). Время задается в UTC (GMT+0).

# При ECONOMYWAKETYPE равном 1 (суточный таймер):

## Формат команды:

ECONOMYWAKECONDITION=HHHHmm;

## Параметры:

| n    | Номер события (0116).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| НННН | Номер события (0116).  Часы, в которые разрешено срабатывание таймера. Представляет собой сумму следующих значений, в десятичном виде:  1 — таймер срабатывает в 00 часов;  2 — таймер срабатывает в 01 час;  4 — таймер срабатывает в 02 часа;  8 — таймер срабатывает в 03 часов;  16 — таймер срабатывает в 03 часов;  22 — таймер срабатывает в 05 часов;  4 — таймер срабатывает в 06 часов;  23 — таймер срабатывает в 07 часов;  25 — таймер срабатывает в 07 часов;  25 — таймер срабатывает в 10 часов;  204 — таймер срабатывает в 10 часов;  4096 — таймер срабатывает в 11 часов;  4096 — таймер срабатывает в 13 часов;  131072 — таймер срабатывает в 14 часов;  252144 — таймер срабатывает в 17 часов;  252144 — таймер срабатывает в 18 часов;  131072 — таймер срабатывает в 18 часов;  262144 — таймер срабатывает в 19 часов;  262145 — таймер срабатывает в 19 часов;  262147 — таймер срабатывает в 19 часов;  262148 — таймер срабатывает в 19 часов;  262149 — таймер срабатывает в 19 часов;  262144 — таймер срабатывает в 19 часов;  262145 — таймер срабатывает в 19 часов;  262146 — таймер срабатывает в 19 часов;  262147 — таймер срабатывает в 20 часов;  262148 — таймер срабатывает в 20 часов;  262144 — таймер срабатывает в 20 часов;  262144 — таймер срабатывает в 20 часов;  262145 — таймер срабатывает в 20 часов;  262146 — таймер срабатывает в 20 часов;  262147 — таймер срабатывает в 20 часов;  262148 — таймер срабатывает в 20 часов;  262149 — таймер срабатывает в 20 часов;  262149 — таймер срабатывает в 20 часов;  262140 — таймер срабатывает в 20 часов; |
| mm   | Минута, в которую запустится таймер (обязательно две цифры).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

Пример команды: таймер срабатывает каждый час в 5 минут:

ECONOMYWAKECONDITION=05;

Пример команды: таймер срабатывает каждый день в 00:06 и 09:06:

ECONOMYWAKECONDITION=51306;

# При ECONOMYWAKETYPE равном 2 (недельный таймер):

### Формат команды:

ECONOMYWAKECONDITION=DDDDHHmm;

#### Параметры:

| n    | Номер события (0116).                                                                                                                                                                                                                                                                                                                                                                                                                           |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DDDD | Дни недели, в которые разрешено срабатывание таймера. Представляет собой сумму следующих значений, в десятичном виде:  1 — таймер срабатывает в воскресенье;  2 — таймер срабатывает в понедельник;  4 — таймер срабатывает во вторник;  8 — таймер срабатывает в среду;  16 — таймер срабатывает в четверг;  32 — таймер срабатывает в пятницу;  64 — таймер срабатывает в субботу.  При <b>DDDD</b> = 0 таймер будет срабатывать каждый день. |
| нн   | Час, в который запустится таймер (обязательно две цифры).                                                                                                                                                                                                                                                                                                                                                                                       |
| mm   | Минута, в которую запустится таймер (обязательно две цифры).                                                                                                                                                                                                                                                                                                                                                                                    |

Пример команды: таймер срабатывает каждый день в 11:05:

ECONOMYWAKECONDITION=1105;

Пример команды: таймер срабатывает в воскресенье, понедельник и вторник в 01:06:

ECONOMYWAKECONDITION=70106;

# При ECONOMYWAKETYPE равном 3 (годовой таймер):

## Формат команды:

ECONOMYWAKECONDITION=MMMMDDHHmm;

#### Параметры:

| n   | Номер события (0116).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ммм | Месяцы, в которые разрешено срабатывание таймера. Представляет собой сумму следующих значений, в десятичном виде:  1 — таймер срабатывает в январе;  2 — таймер срабатывает в феврале;  4 — таймер срабатывает в марте;  8 — таймер срабатывает в апреле;  16 — таймер срабатывает в мае;  32 — таймер срабатывает в июне;  64 — таймер срабатывает в июле;  128 — таймер срабатывает в августе;  256 — таймер срабатывает в сентябре;  512 — таймер срабатывает в октябре;  1024 — таймер срабатывает в ноябре;  2048 — таймер срабатывает в декабре. |
| DD  | День месяца, в который запустится таймер (обязательно две цифры).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| нн  | Час, в который запустится таймер (обязательно две цифры).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| mm  | Минуты, в которые запустится таймер (обязательно две цифры).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

Пример команды: таймер срабатывает каждый месяц в первое число в 10:05:

ECONOMYWAKECONDITION=011005;

Пример команды: таймер срабатывает 10го числа в марте и апреле в 05:26:

ECONOMYWAKECONDITION=12100526;

#### **ECONOMYDELAY**

Установка задержки срабатывания входа в режим экономии.

- Доступна через сервер и SMS.
- Версия прошивки: 13.37 и выше.
- Команда запроса: ECONOMYDELAY.

#### Формат команды:

ECONOMYDELAY=time;

### Параметры:

| time | Задержка срабатывания входа в режим экономии, в секундах (086400). |
|------|--------------------------------------------------------------------|
|------|--------------------------------------------------------------------|

### Пример команды:

ECONOMYDELAY=3;

#### Пример ответа:

ECONOMYDELAY=3;

**Примечание.** В случае, если контроллер выходит из режима экономии по условию ECONOMYWAKECONDITION, а состояние ECONOMYCONDITION соответствует режиму экономии, то контроллер заново перейдет в режим экономии после задержки в **time** секунд. В таком случае <u>ECONOMYDELAY</u> будет работать так же, как длительность выхода из режима экономии (пробуждения).

**Примечание.** Следует учитывать, что при установке для параметра **time** значения, превышающего сутки, выдерживание заданного времени не гарантируется из-за автоматического ежесуточного перезапуска контроллера.

#### **ECONOMYWAKEDELAY**

Установка задержки срабатывания выхода из режима экономии (пробуждения).

- Доступна через сервер и SMS.
- Версия прошивки: 13.37 и выше.
- Команда запроса: GECONOMYWAKEDELAY.

#### Формат команды:

ECONOMYWAKEDELAY=time;

#### Параметры:

| time | Задержка срабатывания выхода из режима экономии (пробуждения), в секундах (04294967294). |
|------|------------------------------------------------------------------------------------------|
| time |                                                                                          |

#### Пример команды:

ECONOMYWAKEDELAY=3;

#### Пример ответа:

ECONOMYWAKEDELAY=3;

Примечание. Если ECONOMYWAKESOURCE равен 10, то данная настройка не учитывается.

**Примечание.** Следует учитывать, что при установке для параметра **time** значения, превышающего сутки, выдерживание заданного времени не гарантируется из-за автоматического ежесуточного перезапуска контроллера.

#### **ECONOMYTIMERDURATION**

Установка продолжительности включения режима экономии по таймеру.

- Доступна через сервер и SMS.
- Версия прошивки: 13.37 и выше.
- Команда запроса: GECONOMYTIMERDURATION.

### Формат команды:

ECONOMYTIMERDURATION=time;

#### Параметры:

| time | Продолжительность включения режима экономии по таймеру, в секундах (14294967294). |  |
|------|-----------------------------------------------------------------------------------|--|
|------|-----------------------------------------------------------------------------------|--|

#### Пример команды:

ECONOMYTIMERDURATION=60;

#### Пример ответа:

ECONOMYTIMERDURATION=60;

**Примечание.** Следует учитывать, что при установке для параметра **time** значения, превышающего сутки, выдерживание заданного времени не гарантируется из-за автоматического ежесуточного перезапуска контроллера.

#### **ECONOMYACTION**

Выбор действий в режиме экономии.

- Доступна через сервер и SMS.
- Версия прошивки: 13.37 и выше.
- Команда запроса: GECONOMYACTION.

## Формат команды:

ECONOMYACTION=action;

#### Параметры:

| action | Действия, которые выполняет контроллер в режиме экономии. Битовое поле, передается в формате HEX, без 0х. Для включения нескольких действий необходимо выполнить сложение соответствующих значений в формате HEX и отправить на контроллер эту сумму (см. EconomyActions). |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

## Пример команды:

ECONOMYACTION=2000;

## Пример ответа:

ECONOMYACTION=2000;

#### **ECONOMYPULSE**

Установка длительности импульса на выходе контроллера при входе в режим экономии.

- Доступна через сервер и SMS.
- Версия прошивки: 13.37 и выше.
- Команда запроса: GECONOMYPULSE.

## Формат команды:

ECONOMYPULSE=dur;

## Параметры:

| dur | Длительность импульса на выходе при входе в режим экономии, в миллисекундах (03600000). |
|-----|-----------------------------------------------------------------------------------------|
|-----|-----------------------------------------------------------------------------------------|

#### Пример команды:

ECONOMYPULSE=1000;

## Пример ответа:

ECONOMYPULSE=1000;

#### **ECONOMYSTARTCOMMAND**

Назначение текстовой команды, которая будет выполнена при входе в режим экономии.

- Доступна через сервер и SMS.
- Версия прошивки: 13.37 и выше.
- Команда запроса: GECONOMYSTARTCOMMAND.

## Формат команды:

ECONOMYSTARTCOMMAND=command;

## Параметры:

| command | Текстовая команда, до 64 символов. |
|---------|------------------------------------|
|---------|------------------------------------|

#### Пример команды:

ECONOMYSTARTCOMMAND=EVENTTRIGGER02;

## Пример ответа:

ECONOMYSTARTCOMMAND=EVENTTRIGGER02;

#### **ECONOMYSTOPCOMMAND**

Назначение текстовой команды, которая будет выполнена при выходе из режима экономии.

- Доступна через сервер и SMS.
- Версия прошивки: 13.37 и выше.
- Команда запроса: GECONOMYSTOPCOMMAND.

## Формат команды:

ECONOMYSTOPCOMMAND=command;

## Параметры:

| command | Текстовая команда, до 64 символов. |
|---------|------------------------------------|
|---------|------------------------------------|

#### Пример команды:

ECONOMYSTOPCOMMAND=EVENTDETRIGGER02;

## Пример ответа:

ECONOMYSTOPCOMMAND=EVENTDETRIGGER02;

#### **ECONOMYTRIGGER**

Принудительное переключение в режим экономии.

- Команда принудительно включает режим экономии независимо от источника и других настроек срабатывания.
- Доступна через сервер и SMS.
- Версия прошивки: 13.37 и выше.

#### Формат команды:

ECONOMYTRIGGER;

### Пример команды:

ECONOMYTRIGGER;

#### Пример ответа:

ECONOMYTRIGGER=1;

**Примечание.** Не рекомендуется использовать данную команду, если ECONOMYWAKESOURCE установлен на 10, а ECONOMYSOURCE установлен не на 4. Если контроллер настроен на вход в режим экономии по какому-либо условию, которое не выполняется в момент входа в режим экономии при помощи данной команды, то периодический выход из режима экономии выполняться не будет, а команда ECONOMYSTATE будет возвращать время нахождения в данном режиме некорректно. Выход из режима экономии при этом возможен только по команде ECONOMYDETRIGGER или при последовательных установке и сбросе условий перехода в режим экономии.

#### **ECONOMYDETRIGGER**

Принудительный выход из режима экономии (пробуждение).

- Команда принудительно выключает режим экономии независимо от источника и других настроек срабатывания.
- Доступна через сервер и SMS.
- Версия прошивки: 13.37 и выше.

#### Формат команды:

ECONOMYDETRIGGER;

### Пример команды:

ECONOMYDETRIGGER;

#### Пример ответа:

ECONOMYDETRIGGER=1;

**Примечание.** В случае, если контроллер выходит из режима экономии по команде ECONOMYDETRIGGER, а состояние ECONOMYCONDITION соответствует режиму экономии, то контроллер заново перейдет в режим экономии после задержки в ECONOMYDELAY секунд.

#### **ECONOMYSTATE**

Запрос состояния режима экономии.

- Команда запрашивает текущее состояние режима экономии.
- Доступна через сервер и SMS.
- Версия прошивки: 13.37 и выше.
- Команда запроса: GECONOMYSTATE.

#### Формат ответа:

ECONOMYSTATE=economyState,sourceState,economyTime;

## Параметры:

| economyState | Состояние режима экономии:  • 1 — в режиме экономии;  • 0 — не в режиме экономии. |
|--------------|-----------------------------------------------------------------------------------|
| sourceState  | Текущее состояние источника события (зависит от ECONOMYSOURCE и ECONOMYTYPE).     |
| economyTime  | Время нахождения в режиме экономии, в миллисекундах.                              |

## Пример команды:

GECONOMYSTATE;

## Пример ответа:

ECONOMYSTATE=1,1,1300;

#### **ECONOMYFLAG**

Назначение номера флага или входа, который включается при выборе действия «включить флаг или виртуальный вход контроллера».

- Доступна через сервер и SMS.
- Версия прошивки: 13.37 и выше.
- Команда запроса: GECONOMYFLAG.

## Формат команды:

ECONOMYFLAG=flag;

#### Параметры:

| I TIACI | Номер флага или входа контроллера, который будет включен, пока длится режим экономии (см. DeviceFlags и DeviceInputsFlags). |
|---------|-----------------------------------------------------------------------------------------------------------------------------|
|---------|-----------------------------------------------------------------------------------------------------------------------------|

## Пример команды:

ECONOMYFLAG=3;

## Пример ответа:

ECONOMYFLAG=3;

#### **MODEMmECONOMYPERIODSEND**

Установка периода отправки данных на сервер по GSM каналу в режиме экономии.

- Доступна через сервер и SMS.
- Версия прошивки: 13.37 и выше.
- Команда запроса: GMODEMmECONOMYPERIODSEND.

#### Формат команды:

MODEMnECONOMYPERIODSEND=time;

#### Параметры:

| m    | Номер модема: • 1 — основной модем; • 2 — второй модем, для устройств АвтоГРАФ-АСН.                                                     |
|------|-----------------------------------------------------------------------------------------------------------------------------------------|
| time | Период отправки данных на сервер в режиме экономии, в секундах (04294967294). Рекомендуется устанавливать период в диапазоне 1043200 с. |

#### Пример команды:

MODEM1ECONOMYPERIODSEND=600;

#### Пример ответа:

MODEM1ECONOMYPERIODSEND=600;

**Примечание.** Следует учитывать, что при установке для параметра **time** значения, превышающего сутки, выдерживание периода не гарантируется из-за автоматического ежесуточного перезапуска контроллера.

## PowerSrc

Источники питания.

| PWRSRC_EXT_POWER = 0x01u | 0х01 — питание от внешнего источника. |
|--------------------------|---------------------------------------|
| PWRSRC_USB = 0x02u       | 0x02 — питание от USB.                |
| PWRSRC_INT_BAT = 0x04u   | 0х04 — питание от внутренней батареи. |
| PWRSRC_EXT_BAT = 0x08u   | 0х08 — питание от внешней батареи.    |
| PWRSRC_SUPERCAP = 0x10u  | 0х10 — питание от ионистора.          |

# **EconomyActions**

Флаги действий экономии энергии (HEX). Может быть задано одновременно несколько флагов (в виде суммы шестнадцатеричных чисел).

| ECA_NOTHING = 0                    | Л — нат пайстрий                                                                                               |
|------------------------------------|----------------------------------------------------------------------------------------------------------------|
|                                    | 0 — нет действий.                                                                                              |
| ECA_OUTPUT1_HOLD_ON = 0x00000001   | 1 — включить выход 1, пока длится режим экономии (для контроллеров с выходом 1).                               |
| ECA_OUTPUT1_HOLD_OFF = 0x000000002 | 2 — выключить выход 1, пока длится режим экономии (для контроллеров с выходом 1).                              |
| ECA_OUTPUT1_PULSE = 0x00000004     | 4 — выдать импульс на выход 1 (для контроллеров с выходом 1).                                                  |
| ECA_OUTPUT2_HOLD_ON = 0x00000008   | 8 — включить выход 2, пока длится режим экономии (для контроллеров с выходом 2).                               |
| ECA_OUTPUT2_HOLD_OFF = 0x00000010  | 10 — выключить выход 2, пока длится режим экономии (для контроллеров с выходом 2).                             |
| ECA_OUTPUT2_PULSE = 0x00000020     | 20 — выдать импульс на выход 2 (для контроллеров с выходом 2).                                                 |
| ECA_OUTPUT3_HOLD_ON = 0x00000040   | 40 — включить выход 3, пока длится режим экономии (для контроллеров с выходом 3).                              |
| ECA_OUTPUT3_HOLD_OFF = 0x00000080  | 80 — выключить выход 3, пока длится режим экономии (для контроллеров с выходом 3).                             |
| ECA_OUTPUT3_PULSE = 0x00000100     | 100 — выдать импульс на выход 3 (для контроллеров с выходом 3).                                                |
| ECA_TRANSMISSION = 0x00000200      | 200 — начать внеочередную отправку данных.                                                                     |
| ECA_STARTCOMMAND = 0x00000400      | 400 — выполнить команду при входе в режим экономии (см. <u>ECONOMYSTARTCOMMAND</u> ).                          |
| ECA_STOPCOMMAND = 0x00000800       | 800 — выполнить команду при выходе из режима экономии (см. ECONOMYSTOPCOMMAND).                                |
| ECA_FLAG_HOLD = 0x00001000         | 1000 — включить флаг или виртуальный вход контроллера, пока длится режим экономии.                             |
| ECA_FREQ_DOWN = 0x00002000         | 2000— понизить частоту процессора (возможно снижение максимальной частоты входов), пока длится режим экономии. |
| ECA_INDICATION_OFF = 0x00004000    | 4000 — отключить индикацию контроллера, пока длится режим экономии.                                            |
| ECA_NAV_OFF = 0x00008000           | 8000 — отключить навигационный приемник, пока длится режим экономии.                                           |
| ECA_NAV_ECONOMY = 0x00010000       | 10000 — перевести приемник в режим экономии, пока длится режим экономии.                                       |
| ECA_GSM_OFF = 0x00020000           | 20000 — отключить GSM модем, пока длится режим экономии.                                                       |
| ECA_GSM_ECONOMY = 0x00040000       | 40000 — перевести GSM модем в режим экономии, пока длится режим экономии.                                      |
| ECA_GSM_PERIOD = 0x00080000        | 80000 — изменить период передачи данных по GSM, пока длится режим экономии.                                    |
| ECA_WIFI_OFF = 0x00100000          | 100000 — отключить модуль Wi-Fi, пока длится режим экономии.                                                   |
| ECA_WIFI_ECONOMY = 0x00200000      | 200000 — перевести модуль Wi-Fi в режим экономии, пока длится режим экономии.                                  |
| ECA_WIFI_PERIOD = 0x00400000       | 400000 — изменить период передачи данных по Wi-Fi, пока длится режим экономии.                                 |
| ECA_BLE_OFF = 0x00800000           | 800000 — отключить BLE (bluetooth), пока длится режим экономии.                                                |
| ECA_CAN_OFF = 0x01000000           | 1000000 — отключить интерфейс CAN, пока длится режим экономии.                                                 |
| ECA_RS232_OFF = 0x02000000         | 2000000 — отключить интерфейс RS-232, пока длится режим экономии.                                              |
| ECA_RS485_OFF = 0x04000000         | 4000000 — отключить интерфейс RS-485, пока длится режим экономии.                                              |
| ECA_1WIRE_OFF = 0x08000000         | 8000000 — отключить интерфейс 1-Wire, пока длится режим экономии.                                              |
| ECA_AGL_OFF = 0x10000000           | 10000000 — отключить работу с AGL файлами, пока длится режим экономии.                                         |

# Управление ID

| Список команд | Описание                                    |
|---------------|---------------------------------------------|
| GID           | Получение уже считанного ID из контроллера. |

| Список групп параметров | Описание                      |
|-------------------------|-------------------------------|
| IdRecordTypes           | Типы записей идентификаторов. |

#### GID

Получение уже считанного ID из контроллера.

# Формат команды:

GID=source,channel;

## Параметры:

| source  | Источник данных (см. IdRecordTypes). |
|---------|--------------------------------------|
| channel | Канал данных (015).                  |

#### Формат ответа:

ID=source,channel,ID,lastRead,lastWrite;

## Параметры:

| source    | Источник данных (см. IdRecordTypes).                                           |
|-----------|--------------------------------------------------------------------------------|
| channel   | Канал данных (015).                                                            |
| ID        | Считанный идентификатор в формате НЕХ.                                         |
| lastRead  | Время с последнего успешного получения идентификатора, в миллисекундах.        |
| lastWrite | Время с последней записи идентификатора в память контроллера, в миллисекундах. |

# Пример команды:

GID=0,0;

# Пример ответа:

ID=0,0,DEFA00000102,150,12040;

# IdRecordTypes

Типы записей идентификаторов.

| IRT_IBUTTON = 0               | 0 — идентификатор (метка) с iButton (1Wire).                      |
|-------------------------------|-------------------------------------------------------------------|
| IRT_BLE = 1                   | 1 — идентификатор (метка) с BLE (беспроводная).                   |
| IRT_CAN = 2                   | 2 — идентификатор (метка) с CAN (проводная).                      |
| IRT_TC = 3                    | 3 — идентификатор транспортного средства.                         |
| IRT_IBEACON = 4               | 4 — идентификатор iBeacon.                                        |
| IRT_MODBUS_NO_DEC_POINT = 0xD | 13 — идентификатор (метка) с MODBUS, формат десятичный без точки. |
| IRT_MODBUS_DEC_POINT = 0xE    | 14 — идентификатор (метка) с MODBUS, формат десятичный с точкой.  |
| IRT_MODBUS_BIN = 0xF          | 15 — идентификатор (метка) с MODBUS, формат двоичный (HEX).       |

# Дифференциальные поправки

| Список команд   | Описание                                                                            |
|-----------------|-------------------------------------------------------------------------------------|
| NTRIPMAINIP     | Назначение IP-адреса и порта NTRIP сервера.                                         |
| NTRIPRESIP      | Назначение IP-адреса и порта резервного канала NTRIP сервера.                       |
| NTRIPMAINPORT   | Назначение порта основного канала NTRIP сервера.                                    |
| NTRIPRESPORT    | Назначение порта резервного канала NTRIP сервера.                                   |
| NTRIPMAINMEDIA  | Выбор каналов передачи данных основного канала NTRIP сервера.                       |
| NTRIPRESMEDIA   | Выбор каналов передачи данных резервного канала NTRIP сервера.                      |
| NTRIPMAINDOMAIN | Указание доменного имени основного канала NTRIP сервера.                            |
| NTRIPRESDOMAIN  | Указание доменного имени резервного канала NTRIP сервера.                           |
| NTRIPSTATUS     | Запрос статуса подключения к NTRIP серверу.                                         |
| NTRIPDISCONNECT | Разрыв соединения с NTRIP сервером.                                                 |
| NTRIPMAINMODE   | Включение режима авторизации основного NTRIP сервера.                               |
| NTRIPMAINUSER   | Указание имени пользователя основного NTRIP сервера.                                |
| NTRIPMAINPASS   | Указание пароля доступа основного NTRIP сервера.                                    |
| NTRIPMAINMOUNT  | Указание точки доступа основного NTRIP сервера.                                     |
| NTRIPMAINGGA    | Установка периода отправки навигационных данных (GGA)<br>на основной сервер NTRIP.  |
| NTRIPRESMODE    | Включение режима авторизации резервного NTRIP сервера.                              |
| NTRIPRESUSER    | Указание имени пользователя резервного NTRIP сервера.                               |
| NTRIPRESPASS    | Указание пароля доступа резервного NTRIP сервера.                                   |
| NTRIPRESMOUNT   | Указание точки доступа резервного NTRIP сервера.                                    |
| NTRIPRESGGA     | Установка периода отправки навигационных данных (GGA)<br>на резервный сервер NTRIP. |
| NTRIPNAV        | Выбор приемника, на который передаются дифференциальные поправки NTRIP.             |
| NTRIPSCAN       | Запуск сканирования точек доступа (MOUNTPOINT) NTRIP.                               |

| Список групп параметров | Описание                                                   |
|-------------------------|------------------------------------------------------------|
| NtripState              | Статус работы с NTRIP сервером.                            |
| NtripNav                | Приемник, на который передаются дифференциальные поправки. |

#### **NTRIPMAINIP**

Назначение IP-адреса и порта NTRIP сервера.

- Доступна через сервер и SMS.
- Версия прошивки: 13.34 и выше.
- Команда запроса: GNTRIPMAINIP.

## Формат команды:

NTRIPMAINIP=ip:port;

## Параметры:

| ip   | IP-адрес сервера в формате 255.255.255.                                                               |  |
|------|-------------------------------------------------------------------------------------------------------|--|
| port | Порт сервера. Параметр <b>port</b> может не указываться. В этом случае будет изменен только IP-адрес. |  |

# Пример команды:

NTRIPMAINIP=8.8.8.8:8031;

## Пример ответа:

NTRIPMAINIP=8.8.8.8:8031;

#### **NTRIPRESIP**

Назначение IP-адреса и порта резервного канала NTRIP сервера.

- Доступна через сервер и SMS.
- Версия прошивки: 13.34 и выше.
- Команда запроса: GNTRIPRESIP.

## Формат команды:

NTRIPRESIP=ip:port;

## Параметры:

| ip   | IP-адрес сервера в формате 255.255.255.                                                               |  |
|------|-------------------------------------------------------------------------------------------------------|--|
| port | Порт сервера. Параметр <b>port</b> может не указываться. В этом случае будет изменен только IP-адрес. |  |

## Пример команды:

NTRIPRESIP=9.9.9.9:8031;

## Пример ответа:

NTRIPRESIP=9.9.9.9:8031;

#### **NTRIPMAINPORT**

Назначение порта основного канала NTRIP сервера.

- Доступна через сервер и SMS.
- Версия прошивки: 13.34 и выше.
- Команда запроса: GNTRIPMAINPORT.

## Формат команды:

NTRIPMAINPORT=port;

#### Параметры:

| port | Порт сервера. |
|------|---------------|
|------|---------------|

## Пример команды:

NTRIPMAINPORT=8031;

# Пример ответа:

NTRIPMAINPORT=8031;

#### **NTRIPRESPORT**

Назначение порта резервного канала NTRIP сервера.

- Доступна через сервер и SMS.
- Версия прошивки: 13.34 и выше.
- Команда запроса: GNTRIPRESPORT.

## Формат команды:

NTRIPRESPORT=port;

## Параметры:

| port | Порт сервера. |
|------|---------------|

## Пример команды:

NTRIPRESPORT=2226;

# Пример ответа:

NTRIPRESPORT=2226;

#### **NTRIPMAINMEDIA**

Выбор каналов передачи данных основного канала NTRIP сервера.

- Доступна через сервер и SMS.
- Версия прошивки: 13.22 и выше.
- Команда запроса: GNTRIPMAINMEDIA.

## Формат команды:

NTRIPMAINMEDIA=media;

#### Параметры:

|       | Канал передачи (физический носитель), через который разрешена передача данных:  • 1 — только GSM (модем 1);                                                                           |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| media | <ul> <li>2 — только Wi-Fi;</li> <li>3 — GSM (модем 1) и Wi-Fi.</li> </ul> Для контроллеров со вторым модемом (АвтоГРАФ-АСН): <ul> <li>4 — только GSM (модем АвтоГРАФ-АСН);</li> </ul> |
|       | <ul> <li>5 — только GSM (модем 1 и модем АвтоГРАФ-АСН);</li> <li>6 — только GSM (модем АвтоГРАФ-АСН) и Wi-Fi;</li> <li>7 — GSM (модем 1 и модем АвтоГРАФ-АСН) и Wi-Fi.</li> </ul>     |

## Пример команды:

NTRIPMAINMEDIA=3;

## Пример ответа:

NTRIPMAINMEDIA=3;

#### **NTRIPRESMEDIA**

Выбор каналов передачи данных резервного канала NTRIP сервера.

- Доступна через сервер и SMS.
- Версия прошивки: 13.22 и выше.
- Команда запроса: GNTRIPRESMEDIA.

## Формат команды:

NTRIPRESMEDIA=media;

#### Параметры:

|       | Канал передачи (физический носитель), через который разрешена передача данных:  • 1 — только GSM (модем 1);  • 2 — только Wi-Fi;                                                                                                                                                                                                |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| media | <ul> <li>3 — GSM (модем 1) и Wi-Fi.</li> <li>Для контроллеров со вторым модемом (АвтоГРАФ-АСН):</li> <li>4 — только GSM (модем АвтоГРАФ-АСН);</li> <li>5 — только GSM (модем 1 и модем АвтоГРАФ-АСН);</li> <li>6 — только GSM (модем АвтоГРАФ-АСН) и Wi-Fi;</li> <li>7 — GSM (модем 1 и модем АвтоГРАФ-АСН) и Wi-Fi.</li> </ul> |

## Пример команды:

NTRIPRESMEDIA=3;

## Пример ответа:

NTRIPRESMEDIA=3;

#### **NTRIPMAINDOMAIN**

Указание доменного имени основного канала NTRIP сервера.

- Доступна через сервер и SMS.
- Версия прошивки: 13.34 и выше.
- Команда запроса: GNTRIPMAINDOMAIN.

## Формат команды:

NTRIPMAINDOMAIN=domain:port;

## Параметры:

| domain | Доменное имя (до 128 символов).                                                                                                                |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------|
| port   | Порт сервера. Параметр <b>port</b> может не указываться (например, NTRIPMAINDOMAIN=domain;). В этом случае будет изменено только доменное имя. |

#### Пример команды:

NTRIPMAINDOMAIN=office.tk-chel.ru:8031;

## Пример ответа:

NTRIPMAINDOMAIN=office.tk-chel.ru:8031;

#### **NTRIPRESDOMAIN**

Указание доменного имени резервного канала NTRIP сервера.

- Доступна через сервер и SMS.
- Версия прошивки: 13.34 и выше.
- Команда запроса: GNTRIPRESDOMAIN.

## Формат команды:

NTRIPRESDOMAIN=domain:port;

#### Параметры:

| domain | Доменное имя (до 128 символов).                                                                                                               |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| port   | Порт сервера. Параметр <b>port</b> может не указываться (например, NTRIPRESDOMAIN=domain;). В этом случае будет изменено только доменное имя. |

#### Пример команды:

NTRIPRESDOMAIN=ag2.tk-chel.ru:8031;

## Пример ответа:

NTRIPRESDOMAIN=ag2.tk-chel.ru:8031;

#### **NTRIPSTATUS**

Запрос статуса подключения к NTRIP серверу.

- Доступна через сервер и SMS.
- Версия прошивки: 13.34 и выше.
- Команда запроса: GNTRIPSTATUS.

#### Формат ответа:

NTRIPSTATUS=current,max,channel,media,state,txlen,rxlen;

## Параметры:

| current | Текущий статус подключения к серверу (см. ServerConnectionStatus).                                                            |
|---------|-------------------------------------------------------------------------------------------------------------------------------|
| max     | Максимальный статус подключения к серверу (см. ServerConnectionStatus).                                                       |
| channel | Канал передачи: • 0 — основной; • 1 — резервный.                                                                              |
| media   | Средство подключения:  • 0 — не определен;  • 1 — GSM модем 1;  • 2 — Wi-Fi;  • 4 — GSM модем 2 (для устройств АвтоГРАФ-АСН). |
| state   | Рабочее состояние поправок (см. NtripState).                                                                                  |
| txlen   | Объем отправленных на сервер данных, в байтах.                                                                                |
| rxlen   | Объем принятых с сервера данных, в байтах.                                                                                    |

## Пример команды:

**GNTRIPSTATUS**;

## Пример ответа:

NTRIPSTATUS=3,5,5,0,1;

#### **NTRIPDISCONNECT**

Разрыв соединения с NTRIP сервером.

- Доступна через сервер и SMS.
- Версия прошивки: 13.34 и выше.
- Команда запроса: —

## Формат команды:

NTRIPDISCONNECT;

Примечание. В ответ на команду контроллер всегда возвращает 1 (резервный параметр).

## Пример команды:

NTRIPDISCONNECT;

# Пример ответа:

NTRIPDISCONNECT=1;

#### **NTRIPMAINMODE**

Включение режима авторизации основного NTRIP сервера.

- Доступна через сервер и SMS.
- Версия прошивки: 13.34 и выше.
- Команда запроса: GNTRIPMAINMODE.

## Формат команды:

NTRIPMAINMODE=mode;

## Параметры:

|      | Режим авторизации:                         |
|------|--------------------------------------------|
| mode | • 0 — выключен (авторизация не требуется); |
|      | • 1 — включен (авторизация требуется).     |

## Пример команды:

NTRIPMAINMODE=1;

# Пример ответа:

NTRIPMAINMODE=1;

#### **NTRIPMAINUSER**

Указание имени пользователя основного NTRIP сервера.

- Доступна через сервер и SMS.
- Версия прошивки: 13.34 и выше.
- Команда запроса: GNTRIPMAINUSER.

## Формат команды:

NTRIPMAINUSER=user;

#### Параметры:

| user | Имя пользователя (до 64 символов). |
|------|------------------------------------|
|------|------------------------------------|

## Пример команды:

NTRIPMAINUSER=technokom;

# Пример ответа:

NTRIPMAINUSER=technokom;

#### **NTRIPMAINPASS**

Указание пароля доступа основного NTRIP сервера.

- Доступна через сервер и SMS.
- Версия прошивки: 13.34 и выше.
- Команда запроса: GNTRIPMAINPASS.

## Формат команды:

NTRIPMAINPASS=pass;

## Параметры:

| pass | Пароль доступа (до 64 символов). |  |
|------|----------------------------------|--|
|------|----------------------------------|--|

## Пример команды:

NTRIPMAINPASS=ntrippass;

## Пример ответа:

NTRIPMAINPASS=ntrippass;

#### **NTRIPMAINMOUNT**

Указание точки доступа основного NTRIP сервера.

- Доступна через сервер и SMS.
- Версия прошивки: 13.34 и выше.
- Команда запроса: GNNTRIPMAINMOUNT.

## Формат команды:

NTRIPMAINMOUNT=mount;

#### Параметры:

| mount | Точка доступа (до 100 символов). |
|-------|----------------------------------|
|-------|----------------------------------|

## Пример команды:

NTRIPMAINMOUNT=TK74;

# Пример ответа:

NTRIPMAINMOUNT=TK74;

#### **NTRIPMAINGGA**

Установка периода отправки навигационных данных (GGA) на основной сервер NTRIP.

- Доступна через сервер и SMS.
- Версия прошивки: 13.34 и выше.
- Команда запроса: GNTRIPMAINGGA.

### Формат команды:

NTRIPMAINGGA=period;

#### Параметры:

| к GGA) на сервер NTRIP, в секундах<br>иендуется устанавливать период |
|----------------------------------------------------------------------|
|                                                                      |

#### Пример команды:

NTRIPMAINGGA=10;

#### Пример ответа:

NTRIPMAINGGA=10;

**Примечание.** Следует учитывать, что при установке для параметра **period** значения, превышающего сутки, выдерживание заданного временного интервала не гарантируется из-за автоматического ежесуточного перезапуска контроллера.

#### **NTRIPRESMODE**

Включение режима авторизации резервного NTRIP сервера.

- Доступна через сервер и SMS.
- Версия прошивки: 13.34 и выше.
- Команда запроса: GNTRIPRESMODE.

## Формат команды:

NTRIPRESMODE=mode;

#### Параметры:

|      | Режим авторизации:                         |
|------|--------------------------------------------|
| mode | • 0 — выключен (авторизация не требуется); |
|      | • 1 — включен (авторизация требуется).     |

## Пример команды:

NTRIPRESMODE=1;

## Пример ответа:

NTRIPRESMODE=1;

#### **NTRIPRESUSER**

Указание имени пользователя резервного NTRIP сервера.

- Доступна через сервер и SMS.
- Версия прошивки: 13.34 и выше.
- Команда запроса: GNTRIPRESUSER.

# Формат команды:

NTRIPRESUSER=user;

## Параметры:

| user | Имя пользователя (до 64 символов). |
|------|------------------------------------|
|------|------------------------------------|

## Пример команды:

NTRIPRESUSER=technokom;

# Пример ответа:

NTRIPRESUSER=technokom;

#### **NTRIPRESPASS**

Указание пароля доступа резервного NTRIP сервера.

- Доступна через сервер и SMS.
- Версия прошивки: 13.34 и выше.
- Команда запроса: GNTRIPRESPASS.

## Формат команды:

NTRIPRESPASS=pass;

#### Параметры:

| pass | Пароль доступа (до 64 символов). |  |
|------|----------------------------------|--|
|------|----------------------------------|--|

## Пример команды:

NTRIPRESPASS=ntrippass;

# Пример ответа:

NTRIPRESPASS=ntrippass;

#### **NTRIPRESMOUNT**

Указание точки доступа резервного NTRIP сервера.

- Доступна через сервер и SMS.
- Версия прошивки: 13.34 и выше.
- Команда запроса: GNNTRIPRESMOUNT.

## Формат команды:

NTRIPRESMOUNT=mount;

#### Параметры:

| mount | Точка доступа (до 100 символов). |
|-------|----------------------------------|
|-------|----------------------------------|

## Пример команды:

NTRIPRESMOUNT=TK74;

# Пример ответа:

NTRIPRESMOUNT=TK74;

#### **NTRIPRESGGA**

Установка периода отправки навигационных данных (GGA) на резервный сервер NTRIP.

- Доступна через сервер и SMS.
- Версия прошивки: 13.34 и выше.
- Команда запроса: GNTRIPRESGGA.

## Формат команды:

NTRIPRESGGA=period;

#### Параметры:

|  | Период отправки навигационных данных (посылок GGA) на сервер NTRIP, в секундах (065534). 0 — передача данных отключена. Рекомендуется устанавливать период в диапазоне 143200 с. |
|--|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|--|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

#### Пример команды:

NTRIPRESGGA=10;

#### Пример ответа:

NTRIPRESGGA=10;

**Примечание.** Следует учитывать, что при установке для параметра **period** значения, превышающего сутки, выдерживание заданного временного интервала не гарантируется из-за автоматического ежесуточного перезапуска контроллера.

#### **NTRIPNAV**

Выбор приемника, на который передаются дифференциальные поправки NTRIP.

- Доступна через сервер и SMS.
- Версия прошивки: 13.34 и выше.
- Команда запроса: GNTRIPNAV.

# Формат команды:

NTRIPNAV=nav;

#### Параметры:

|     | Приемник, на который передаются дифференциальные поправки:                  |
|-----|-----------------------------------------------------------------------------|
| nav | 0 — отключено;     1 — внутренний приемник;     2 — вночник приемник PS 232 |
|     | • 2 — внешний приемник RS-232.                                              |

## Пример команды:

NTRIPNAV=2;

## Пример ответа:

NTRIPNAV=2;

#### **NTRIPSCAN**

Запуск сканирования точек доступа (MOUNTPOINT) NTRIP.

- Доступна через сервер и SMS.
- Версия прошивки: 13.34 и выше.
- Команда запроса: GNTRIPSCAN.

## Формат команды:

NTRIPSCAN=status,domain:port;

#### Параметры:

| status | Статус сканирования:  • 0 — отключено;  • 1 — запуск сканирования;  • 2 — сканирование проведено успешно;  • 3 — ошибка при сканировании. |  |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------|--|
| domain | Доменное имя основного NTRIP сервера (опционально).                                                                                       |  |
| port   | Порт основного NTRIP сервера (опционально).                                                                                               |  |

**Примечание.** Считывание точек доступа вызывается командой NTRIPSCAN=1;, далее статус считывания можно отслеживать командой GNTRIPSCAN;. Результат считывания выдается в CDC.

#### Пример команды:

NTRIPSCAN=1;

## Пример ответа:

NTRIPSCAN=1,office.tk-chel.ru:8031;

# NtripState

Статус работы с NTRIP сервером.

| NS_INIT = 0             | 0 — начальное состояние.           |
|-------------------------|------------------------------------|
| NS_NOT_AUTHORIZED = 1   | 1 — ошибка авторизации.            |
| NS_WRONG_MOUNTPOINT = 2 | 2 — ошибочно задана точка доступа. |
| NS_GNSS_DATA = 3        | 3 — рабочий режим.                 |
| NS_WRONG_ANSWER = 4     | 4 — ошибка разбора ответа.         |

# NtripNav

Приемник, на который передаются дифференциальные поправки.

| NTN_OFF = 0      | 0 — отключено (только CDC).                     |
|------------------|-------------------------------------------------|
| NTN_INTERNAL = 1 | 1 — внутренний приемник.                        |
| NTN_RS232 = 2    | 2 — внешний приемник, подключен по шине RS-232. |



OOO HOO «TexhoKom»